518 research outputs found

    Structure-function studies of class I aldolases - exploring novel activities : mechanism, moonlighting, and inhibition

    Full text link
    La fructose-1,6-bisphosphate aldolase de classe I est une enzyme glycolytique (EC 4.1.2.13) qui catalyse le clivage rĂ©versible du fructose-1,6-bisphosphate (FBP) en dihydroxyacĂ©tone phosphate (DHAP) et glycĂ©raldĂ©hyde-3-phosphate (G3P). Des annĂ©es de recherche sur FBP aldolase ont permis d’identifier les rĂ©sidus impliquĂ©s dans son mĂ©canisme rĂ©actionnel, ont tracĂ© en grande partie les coordonnĂ©es de la rĂ©action, ont rĂ©vĂ©lĂ© de nouvelles fonctions dites « moonlighting », et ont validĂ© l’aldolase comme une cible attrayante pour des applications anti-glycolytiques tel que le cancer. Il existe nĂ©anmoins des questions en suspens relatives Ă  ces activitĂ©s que nous avons Ă©tudiĂ©es. Tout d'abord, la trajectoire dĂ©taillĂ©e de l'aldĂ©hyde relatif Ă  sa liaison au site actif allant jusqu’à la formation du lien carbone-carbone par condensation aldolique est indĂ©fini. Pour Ă©lucider les dĂ©tails molĂ©culaires liĂ©s Ă  ces Ă©vĂ©nements, nous avons dĂ©terminĂ© des structures cristallographiques Ă  hautes rĂ©solution de l’aldolase de classe I chez Toxoplasma gondii, qui porte une identitĂ© de sĂ©quence Ă©levĂ©e avec l’aldolase humaine (57%), en complexe avec l’intermĂ©diaire ternaire de prĂ©-condensation. Le complexe ternaire rĂ©vĂšle un mode de liaison non-productive inhabituel pour G3P dans une configuration cis qui permet l’alignement de l'aldĂ©hyde Ă  proximitĂ© du nuclĂ©ophile naissant. La configuration compĂ©tente pour la condensation aldolique provient d'une transposition cis-trans de l'aldĂ©hyde qui produit une liaison hydrogĂšne courte permettant la polarisation de l'aldĂ©hyde et le transfert de proton au niveau de Glu-189. Nos rĂ©sultats informent les chimistes synthĂ©tiques qui cherchent Ă  dĂ©velopper l’aldolase comme biocatalyseur pour des rĂ©actions stĂ©rĂ©o-contrĂŽlĂ©es. Le rĂŽle prĂ©sumĂ© de l’aldolase dans la production du mĂ©thyglyoxal (MGO), un mĂ©tabolite dicarbonyle hautement rĂ©actif qui gĂ©nĂšre des « advanced glycation end products » (AGES) a Ă©galement Ă©tĂ© Ă©tudiĂ© structurellement et enzymatiquement. Une enquĂȘte structurelle cristallographique de MGO gĂ©nĂ©rĂ©e par dĂ©composition enzymatique chez l’aldolase de classe I a rĂ©vĂ©lĂ© que, contrairement aux indications prĂ©liminaires, l'apparition hypothĂ©tique de MGO et de phosphate inorganique (Pi) rĂ©sultant de la dĂ©composition enzymatique de DHAP dans le site actif de l’aldolase est mieux interprĂ©tĂ©e par une population mixte de DHAP et de molĂ©cules d'eau. Une Ă©tude enzymatique a rĂ©vĂ©lĂ© que la dĂ©composition spontannĂ©e des trioses-phosphate est une source majeure de la production de MGO, alors qu’une production catalysĂ©e par l’aldolase est peu concluante. L’identification des sources de production de MGO continue d'ĂȘtre une prioritĂ© afin de dĂ©velopper des stratĂ©gies pour attĂ©nuer les manifestations cliniques de pathologies associĂ©es au MGO. La FBP aldolase est Ă©galement reconnu pour ses activitĂ©s « moonlighting » - du fait qu’elle effectue plus d'une activitĂ© sans rapport avec sa fonction glycolytique. Divers partenaires de l’aldolase sont rapportĂ©s dans la littĂ©rature, y compris les adhĂ©sines de surface cellulaire chez les parasites apicomplexes, dans lequel l’aldolase exĂ©cute une fonction d'Ă©chafaudage entre le complexe actomyosine et les adhĂ©sines - une interaction qui est dĂ©cisive pour la motilitĂ© et l'invasion des cellules hĂŽte. Le mode de liaison de cette interaction a Ă©tĂ© Ă©tudiĂ© et nos rĂ©sultats sont compatibles avec une liaison au site actif. Les dĂ©tails prĂ©cis de cette interaction ont des implications thĂ©rapeutiques, Ă©tant donnĂ© que le ciblage de celui-ci rĂ©duit l'invasion des cellules hĂŽte par les parasites. Enfin, l’aldolase de classe I est de plus en plus reconnu pour son potentiel comme cible anti-glycolytique dans les cellules qui sont fortement tributaires du flux glycolytique, comme les cellules cancĂ©reuses et les parasites protozoaires. Le dĂ©veloppement de nouveaux inhibiteurs de haute affinitĂ© est donc non seulement avantageux pour des Ă©tudes mĂ©canistiques, mais reprĂ©sente un potentiel pharmacologique sans fin. Nous avons dĂ©veloppĂ© une nouvelle classe d’inhibiteurs de haute affinitĂ© de type inhibition lente et avons dĂ©terminĂ© la base molĂ©culaire de leur inhibition grĂące Ă  des structures cristallographiques Ă  haute rĂ©solution et par un profilage enzymatique. Cette Ă©tude, qui combine plusieurs disciplines, y compris la cristallographie, enzymologie et chimie organique, souligne l'intĂ©rĂȘt et l'importance d'une approche multidisciplinaire.Class I Fructose-1,6-bisphosphate aldolases are glycolytic enzymes (EC 4.1.2.13) that catalyze the reversible cleavage of fructose-1,6-bisphosphate (FBP) to dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P). Years of research on FBP aldolases has identified residues implicated in the reaction mechanism, mapped the greater part of the reaction coordinates, and revealed novel moonlighting functions. Further, FBP aldolase is recognized as an attractive target for anti-glycolytic applications such as cancer. There are nevertheless outstanding questions related to these activities that were investigated in this thesis. First, the detailed trajectory of the reaction mechanism from aldehyde binding in the active site to carbon-carbon bond formation by aldol condensation is undefined. To elucidate the molecular details related to these events, we solved high-resolution crystallographic structures of native class I aldolase from Toxoplasma gondii, which has a high sequence identity with human aldolase (57 %), in complex with the pre-condensation ternary intermediate. The ternary complex reveals a condensation-incompetent binding mode for G3P in a cis-configuration that aligns the aldehyde alongside the nascent nucleophile. The productive aldol-competent configuration arises from a cis-trans rearrangement of the aldehyde that produces a short hydrogen bond required for polarization of the aldehyde and coincident proton transfer at Glu-189. Our results inform synthetic chemists seeking to develop aldolases for stereo-controlled reactions in biosynthetic applications. The suspected role of aldolase in methylglyoxal (MGO) production, a highly reactive dicarbonyl metabolite that produces advanced glycation end-products (AGES) was also probed structurally and enzymatically. A crystallographic structural investigation of MGO generated by enzymatic decomposition in class I aldolase revealed that, contrary to preliminary indications, the appearance of MGO and inorganic phosphate (Pi) resulting from enzymatic decomposition of DHAP in the active site of aldolase is more appropriately modeled by a mixed population of DHAP and water molecules. Enzymatic investigation revealed triose-phosphate decomposition to be a major source of MGO production, whereas production by aldolase did not exceed assay background levels. Identifying the main sources of MGO production continues to be a priority for mitigating the clinical manifestations of MGO-derived pathologies. FBP aldolase is also recognized for its moonlighting properties – performing more than one activity unrelated to the glycolytic function. Diverse aldolase partners are reported, including cell surface adhesins in apicomplexan parasites, in which aldolase performs a bridging function between the actomyosin complex and the cytoplasmic domain of the adhesins – an interaction that is crucial for motility and host-cell invasion. The binding mode of this interaction was investigated and our results are consistent with active site binding. The precise details of aldolase-adhesin binding has therapeutic implications, since targeting of the latter reduces host-cell invasion by parasites. Finally, class I aldolase is gaining prominence as an anti-glycolytic target in cells that are highly dependent on glycolytic flux, such as cancer cells and protozoan parasites. Developing new high-affinity inhibitors for these enzymes is therefore not only advantageous for mechanistic studies, but has endless pharmacological potential. We developed a novel class of high-affinity aldolase inhibitors, bisphosphonates, and determined the molecular basis of their inhibition with high-resolution crystallographic structures and enzymatic profiling. This study, which combined several disciplines, including crystallography, enzymology, and organic chemistry, underscores the interest and significance of a multidisciplinary approach

    Asynchrony adaptation reveals neural population code for audio-visual timing

    Get PDF
    The relative timing of auditory and visual stimuli is a critical cue for determining whether sensory signals relate to a common source and for making inferences about causality. However, the way in which the brain represents temporal relationships remains poorly understood. Recent studies indicate that our perception of multisensory timing is flexible—adaptation to a regular inter-modal delay alters the point at which subsequent stimuli are judged to be simultaneous. Here, we measure the effect of audio-visual asynchrony adaptation on the perception of a wide range of sub-second temporal relationships. We find distinctive patterns of induced biases that are inconsistent with the previous explanations based on changes in perceptual latency. Instead, our results can be well accounted for by a neural population coding model in which: (i) relative audio-visual timing is represented by the distributed activity across a relatively small number of neurons tuned to different delays; (ii) the algorithm for reading out this population code is efficient, but subject to biases owing to under-sampling; and (iii) the effect of adaptation is to modify neuronal response gain. These results suggest that multisensory timing information is represented by a dedicated population code and that shifts in perceived simultaneity following asynchrony adaptation arise from analogous neural processes to well-known perceptual after-effects

    Complete Issue 45(4)

    Get PDF
    Complete digitized issue (volume 45, issue 4, May 1963) of The Gavel of Delta Sigma Rho

    Home-based reach-to-grasp training for people after stroke: study protocol for a feasibility randomized controlled trial

    Get PDF
    BackgroundThis feasibility study is intended to assess the acceptability of home-based task-specific reach-to-grasp (RTG) training for people with stroke, and to gather data to inform recruitment, retention, and sample size for a definitive randomized controlled trial. Methods/designThis is to be a randomized controlled feasibility trial recruiting 50 individuals with upper-limb motor impairment after stroke. Participants will be recruited after discharge from hospital and up to 12 months post-stroke from hospital stroke services and community therapy-provider services. Participants will be assessed at baseline, and then electronically randomized and allocated to group by minimization, based on the time post-stroke and extent of upper-limb impairment. The intervention group will receive 14 training sessions, each 1 hour long, with a physiotherapist over 6 weeks and will be encouraged to practice independently for 1 hour/day to give a total of 56 hours of training time per participant. Participants allocated to the control group will receive arm therapy in accordance with usual care. Participants will be measured at 7 weeks post-randomization, and followed-up at 3 and 6 months post-randomization. Primary outcome measures for assessment of arm function are the Action Research Arm Test (ARAT) and Wolf Motor Function Test (WMFT). Secondary measures are the Motor Activity Log, Stroke Impact Scale, Carer Strain Index, and health and social care resource use. All assessments will be conducted by a trained assessor blinded to treatment allocation. Recruitment, adherence, withdrawals, adverse events (AEs), and completeness of data will be recorded and reported. DiscussionThis study will determine the acceptability of the intervention, the characteristics of the population recruited, recruitment and retention rates, descriptive statistics of outcomes, and incidence of AEs. It will provide the information needed for planning a definitive trial to test home-based RTG training. Trial registrationISRCTN: ISRCTN5671658

    Object size determines the spatial spread of visual time

    Get PDF
    A key question for temporal processing research is how the nervous system extracts event duration, despite a notable lack of neural structures dedicated to duration encoding. This is in stark contrast to the orderly arrangement of neurons tasked with spatial processing. In the current study, we examine the linkage between the spatial and temporal domains. We use sensory adaptation techniques to generate aftereffects where perceived duration is either compressed or expanded in the opposite direction to the adapting stimulus’ duration. Our results indicate that these aftereffects are broadly tuned, extending over an area approximately five times the size of the stimulus. This region is directly related to the size of the adapting stimulus – the larger the adapting stimulus the greater the spatial spread of the aftereffect. We construct a simple model to test predictions based on overlapping adapted vs non-adapted neuronal populations and show that our effects cannot be explained by any single, fixed-scale neural filtering. Rather, our effects are best explained by a self scaled mechanism underpinned by duration selective neurons that also pool spatial information across earlier stages of visual processing
    • 

    corecore