88 research outputs found
Direct detection of extended-spectrum beta-lactamases (CTX-M) from blood cultures by LC-MS/MS bottom-up proteomics
Rapid bacterial species identification and antibiotic susceptibility testing in positive blood cultures have an important impact on the antibiotic treatment for patients. To identify extended-spectrum beta-lactamases (ESBL) directly in positive blood culture bottles, we developed a workflow of saponin extraction followed by a bottom-up proteomics approach using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The workflow was applied to positive blood cultures with Escherichia coli and Klebsiella pneumoniae collected prospectively in two academic hospitals over a 4-month period. Of 170 positive blood cultures, 22 (12.9%) contained ESBL-positive isolates based on standard susceptibility testing. Proteomic analysis identified CTX-M ESBLs in 95% of these isolates directly in positive blood cultures, whereas no false positives were found in the non-ESBL producing positive blood cultures. The results were confirmed by molecular characterisation of beta-lactamase genes. Based on this proof-of-concept study, we conclude that LC-MS/MS-based protein analysis can directly identify extended-spectrum beta lactamases in E. coli and K. pneumoniae positive blood cultures, and could be further developed for application in routine diagnostics
L1cam as an e-selectin ligand in colon cancer
POCI-01-0145-FEDER-007728
ref. 140_596817822Metastasis is the main cause of death among colorectal cancer (CRC) patients. E-selectin and its carbohydrate ligands, including sialyl Lewis X (sLeX) antigen, are key players in the binding of circulating tumor cells to the endothelium, which is one of the major events leading to organ invasion. Nevertheless, the identity of the glycoprotein scaffolds presenting these glycans in CRC remains unclear. In this study, we firstly have characterized the glycoengineered cell line SW620 transfected with the fucosyltransferase 6 (FUT6) coding for the α1,3-fucosyltransferase 6 (FUT6), which is the main enzyme responsible for the synthesis of sLeX in CRC. The SW620FUT6 cell line expressed high levels of sLeX antigen and E-selectin ligands. Moreover, it displayed increased migration ability. E-selectin ligand glycoproteins were isolated from the SW620FUT6 cell line, identified by mass spectrometry, and validated by flow cytometry and Western blot (WB). The most prominent E-selectin ligand we identified was the neural cell adhesion molecule L1 (L1CAM). Previous studies have shown association of L1CAM with metastasis in cancer, thus the novel role as E-selectin counter-receptor contributes to understand the molecular mechanism involving L1CAM in metastasis formation.publishersversionpublishe
MHC class I stability is modulated by cell surface sialylation in human dendritic cells
PD/BD/52472/2014
project (Ref. 38870)
POCI-01-0145-FEDER-007728Maturation of human Dendritic Cells (DCs) is characterized by increased expression of antigen presentation molecules, and overall decreased levels of sialic acid at cell surface. Here, we aimed to identify sialylated proteins at DC surface and comprehend their role and modulation. Mass spectrometry analysis of DC’s proteins, pulled down by a sialic acid binding lectin, identified molecules of the major human histocompatibility complex class I (MHC-I), known as human leucocyte antigen (HLA). After desialylation, DCs showed significantly higher reactivity with antibodies specific for properly folded MHC-I-β2-microglobulin complex and for β2-microglobulin but showed significant lower reactivity with an antibody specific for free MHC-I heavy chain. Similar results for antibody reactivities were observed for TAP2-deficient lymphoblastoid T2 cells, which express HLA-A*02:01. Using fluorescent peptide specifically fitting the groove of HLA-A*02:01, instead of antibody staining, also showed higher peptide binding on desialylated cells, confirming higher surface expression of MHC-I complex. A decay assay showed that desialylation doubled the half-life of MHC-I molecules at cell surface in both DCs and T2 cells. The biological impact of DC´s desialylation was evaluated in co-cultures with autologous T cells, showing higher number and earlier immunological synapses, and consequent significantly increased production of IFN-γ by T cells. In summary, sialic acid content modulates the expression and stability of complex MHC-I, which may account for the improved DC-T synapses.publishersversionpublishe
Protein and small non-coding RNA-enriched extracellular vesicles are released by the pathogenic blood fluke Schistosoma mansoni
Background: Penetration of skin, migration through tissues and establishment of long-lived intravascular partners require Schistosoma parasites to successfully manipulate definitive host defences. While previous studies of larval schistosomula have postulated a function for excreted/secreted (E/S) products in initiating these host-modulatory events, the role of extracellular vesicles (EVs) has yet to be considered. Here, using preparatory ultracentrifugation as well as methodologies to globally analyse both proteins and small non-coding RNAs (sncRNAs), we conducted the first characterization of Schistosoma mansoni schistosomula EVs and their potential host-regulatory cargos. Results: Transmission electron microscopy analysis of EVs isolated from schistosomula in vitro cultures revealed the presence of numerous, 30–100 nm sized exosome-like vesicles. Proteomic analysis of these vesicles revealed a core set of 109 proteins, including homologs to those previously found enriched in other eukaryotic EVs, as well as hypothetical proteins of high abundance and currently unknown function. Characterization of E/S sncRNAs found within and outside of schistosomula EVs additionally identified the presence of potential gene-regulatory miRNAs (35 known and 170 potentially novel miRNAs) and tRNA-derived small RNAs (tsRNAs; nineteen 5′ tsRNAs and fourteen 3′ tsRNAs). Conclusions: The identification of S. mansoni EVs and the combinatorial protein/sncRNA characterization of their cargo signifies that an important new participant in the complex biology underpinning schistosome/host interactions has now been discovered. Further work defining the role of these schistosomula EVs and the function/stability of intra- and extra-vesicular sncRNA components presents tremendous opportunities for developing novel schistosomiasis diagnostics or interventions
Schistosoma mansoni venom allergen-like proteins:Phylogenetic relationships, stage-specific transcription and tissue localization as predictors of immunological cross-reactivity
O artigo encontra-se disponÃvel para download no site do Editor.Submitted by Ana Maria Fiscina Sampaio ([email protected]) on 2019-07-15T18:23:01Z
No. of bitstreams: 1
Farias, L.P. Schistosoma mansoni venom...2019.pdf: 1118803 bytes, checksum: 1ddd953840abbbd5d56675c8d6c4fa6e (MD5)Approved for entry into archive by Ana Maria Fiscina Sampaio ([email protected]) on 2019-07-15T18:39:31Z (GMT) No. of bitstreams: 1
Farias, L.P. Schistosoma mansoni venom...2019.pdf: 1118803 bytes, checksum: 1ddd953840abbbd5d56675c8d6c4fa6e (MD5)Made available in DSpace on 2019-07-15T18:39:31Z (GMT). No. of bitstreams: 1
Farias, L.P. Schistosoma mansoni venom...2019.pdf: 1118803 bytes, checksum: 1ddd953840abbbd5d56675c8d6c4fa6e (MD5)
Previous issue date: 2019Welcome Trust
(UK) (WT084273/Z/07/Z) to KFH, Fundação Butantan, Fundação
de Amparo à Pesquisa do Estado de São Paulo (Brazil) to LPF and
LLC (2012/23124-4), Conselho Nacional de Desenvolvimento
CientÃfico e Tecnológico (CNPq) to LCCL and Coordenação de Aperfeiçoamento
de Pessoal de NÃvel Superior – Brasil (CAPES) –
Finance Code 001, and by fellowships from Fundação de Amparo
à Pesquisa do Estado de São Paulo (FAPESP, Brazil) to LPF
(2008/57946-5) and HKF (2007/07685-8) and from CNPq to MIK
(160861/2017-9). We thank Dra. Eliana Nakano and Ms. Patricia
A. Miyasato for supplying the parasite stages and to Alexsander
Seixas de Souza for confocal microscopy (FAPESP 00/11624-5)
imaging support, all from Instituto Butantan, Brazil.Instituto Butantan. Centro de Biotecnologia. São Paulo, SP, Brasil / Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador, BA, Brasil.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Instituto Butantan. Centro de Biotecnologia. São Paulo, SP, Brasil.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador, BA, Brasil.Instituto Butantan. Centro de Biotecnologia. São Paulo, SP, Brasil / Universidade de São Paulo. Pós-Graduação Interunidades em Biotecnologia. São Paulo, SP, Brasil.Leiden University Medical Centre. Center for Proteomics and Metabolomics. RC Leiden, The Netherlands.Leiden University Medical Centre. Department of Parasitology. RC Leiden, The Netherlands.Instituto Butantan. Centro de Biotecnologia. São Paulo, SP, Brasil.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Schistosoma mansoni venom allergen-like proteins (SmVALs) are part of a diverse protein superfamily partitioned into two groups (group 1 and group 2). Phylogenetic analyses of group 1 SmVALs revealed that members could be segregated into subclades (A-D); these subclades share similar gene expression patterns across the parasite lifecycle and immunological cross-reactivity. Furthermore, whole-mount in situ hybridization demonstrated that the phylogenetically, transcriptionally and immunologically-related SmVAL4, 10, 18 and 19 (subclade C) were all localized to the pre-acetabular glands of immature cercariae. Our results suggest that SmVAL group 1 phylogenetic relationships, stage-specific transcriptional profiles and tissue localization are predictive of immunological cross-reactivity
Furin is a chemokine-modifying enzyme: in vitro and in vivo processing of CXCL10 generates a C-terminally truncated chemokine retaining full activity
Chemokines comprise a class of structurally related proteins that are involved in many aspects of leukocyte migration under basal and inflammatory conditions. In addition to the large number of genes, limited processing of these proteins by a variety of enzymes enhances the complexity of the total spectrum of chemokine variants. We have recently shown that the native chemokine CXCL10 is processed at the C terminus, thereby shedding the last four amino acids. The present study was performed to elucidate the mechanism in vivo and in vitro and to study the biological activity of this novel isoform of CXCL10. Using a combination of protein purification and mass spectrometric techniques, we show that the production of C-terminally truncated CXCL10 by primary keratinocytes is inhibited in vivo by a specific inhibitor of pro-protein convertases (e.g. furin) but not by inhibition of matrix metalloproteinases. Moreover, CXCL10 is processed by furin in vitro, which is abrogated by a mutation in the furin recognition site. Using GTRγS binding, C
Proteomic Analysis of the Dysferlin Protein Complex Unveils Its Importance for Sarcolemmal Maintenance and Integrity
Dysferlin is critical for repair of muscle membranes after damage. Mutations in dysferlin lead to a progressive muscular dystrophy. Recent studies suggest additional roles for dysferlin. We set out to study dysferlin's protein-protein interactions to obtain comprehensive knowledge of dysferlin functionalities in a myogenic context. We developed a robust and reproducible method to isolate dysferlin protein complexes from cells and tissue. We analyzed the composition of these complexes in cultured myoblasts, myotubes and skeletal muscle tissue by mass spectrometry and subsequently inferred potential protein functions through bioinformatics analyses. Our data confirm previously reported interactions and support a function for dysferlin as a vesicle trafficking protein. In addition novel potential functionalities were uncovered, including phagocytosis and focal adhesion. Our data reveal that the dysferlin protein complex has a dynamic composition as a function of myogenic differentiation. We provide additional experimental evidence and show dysferlin localization to, and interaction with the focal adhesion protein vinculin at the sarcolemma. Finally, our studies reveal evidence for cross-talk between dysferlin and its protein family member myoferlin. Together our analyses show that dysferlin is not only a membrane repair protein but also important for muscle membrane maintenance and integrity
PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1
The WD40-repeat protein DDB2 is essential for efficient recognition and subsequent removal of ultraviolet (UV)-induced DNA lesions by nucleotide excision repair (NER). However, how DDB2 promotes NER in chromatin is poorly understood. Here, we identify poly(ADP-ribose) polymerase 1 (PARP1) as a novel DDB2-associated factor. We demonstrate that DDB2 facilitated poly(ADP-ribosyl)ation of UV-damaged chromatin through the activity of PARP1, resulting in the recruitment of the chromatin-remodeling enzyme ALC1. Depletion of ALC1 rendered cells sensitive to UV and impaired repair of UV-induced DNA lesions. Additionally, DDB2 itself was targeted by poly(ADP-ribosyl)ation, resulting in increased protein stability and a prolonged chromatin retention time. Our in vitro and in vivo data support a model in which poly(ADP-ribosyl)ation of DDB2 suppresses DDB2 ubiquitylation and outline a molecular mechanism for PARP1-mediated regulation of NER through DDB2 stabilization and recruitment of the chromatin remodeler ALC1
Fibroblasts facilitate re-epithelialization in wounded human skin equivalents
The re-epithelialization of the wound involves the migration of keratinocytes from the edges of the wound. During this process, keratinocyte migration and proliferation will depend on the interaction of keratinocytes with dermal fibroblasts and the extracellular matrix. The present study aimed to investigate (1) the role of fibroblasts in the re-epithelialization process and on the reconstitution of the dermal-epidermal junction (DEJ) and (2) differential protein expression during re-epithelialization. For both purposes, three-dimensional human skin equivalents (HSE) were used. A full-thickness wound in HSE was introduced by freezing with liquid nitrogen and a superficial wound by linear incision with a scalpel. The closure of the wound in the absence or presence of exogenous growth factors was followed by monitoring the rate of re-epithelialization and regeneration of the DEJ. The results obtained in this study demonstrate that fibroblasts facilitate wound closure, but they differentially affected the deposition of various basement membrane components. The deposition of laminin 5 at the DEJ was delayed in superficial wounds as compared to the full-thickness wounds. During freeze injury, some basement membrane (BM) components remain associated with the dermal compartment and probably facilitate the BM reconstitution. The re-epithelialization process in full-thickness but not in superficial wounds was accelerated by the presence of keratinocyte growth factor and especially by epidermal growth factor. In addition, we have examined the deposition of various basement membrane components and the differences in protein expression in a laterally expanding epidermis in uninjured HSE. Laminin 5, type IV and VII collagen deposition was decreased in the laterally expanding epidermis, indicating that the presence of these proteins is not required for keratinocyte migration to occur in vitro. Using two-dimensional polyacrylamide gel electrophoresis, we have identified DJ-1, a protein not earlier reported to be differently expressed during the epithelialization process of the skin
- …