214 research outputs found

    Impact of Type Ia Supernova Ejecta on a Helium-star Binary Companion

    Full text link
    The impact of Type Ia supernova ejecta on a helium-star companion is investigated via high-resolution, two-dimensional hydrodynamic simulations. For a range of helium-star models and initial binary separations it is found that the mass unbound in the interaction, δMub\delta M_{\rm ub}, is related to the initial binary separation, aa, by a power law of the form δMubam\delta M_{\rm ub} \propto a^{m}. This power-law index is found to vary from -3.1 to -4.0, depending on the mass of the helium star. The small range of this index brackets values found previously for hydrogen-rich companions, suggesting that the dependence of the unbound mass on orbital separation is not strongly sensitive to the nature of the binary companion. The kick velocity is also related to the initial binary separation by a power law with an index in a range from -2.7 to -3.3, but the power-law index differs from those found in previous studies for hydrogen-rich companions. The space motion of the companion after the supernova is dominated by its orbital velocity in the pre-supernova binary system. The level of Ni/Fe contamination of the companion resulting from the passage of the supernova ejecta is difficult to estimate, but an upper limit on the mass of bound nickel is found to be 5×104 M\sim 5\times 10^{-4}\ M_\odot.Comment: Accepted in ApJ, 9 pages, 9 figure

    Calnexin Is Necessary for T Cell Transmigration into the Central Nervous System

    Get PDF
    In multiple sclerosis (MS), a demyelinating inflammatory disease of the CNS, and its animal model (experimental autoimmune encephalomyelitis; EAE), circulating immune cells gain access to the CNS across the blood-brain barrier to cause inflammation, myelin destruction, and neuronal damage. Here, we discovered that calnexin, an ER chaperone, is highly abundant in human brain endothelial cells of MS patients. Conversely, mice lacking calnexin exhibited resistance to EAE induction, no evidence of immune cell infiltration into the CNS, and no induction of inflammation markers within the CNS. Furthermore, calnexin deficiency in mice did not alter the development or function of the immune system. Instead, the loss of calnexin led to a defect in brain endothelial cell function that resulted in reduced T cell trafficking across the blood-brain barrier. These findings identify calnexin in brain endothelial cells as a potentially novel target for developing strategies aimed at managing or preventing the pathogenic cascade that drives neuroinflammation and destruction of the myelin sheath in MS

    An AMR Study of the Common Envelope Phase of Binary Evolution

    Full text link
    The hydrodynamic evolution of the common envelope phase of a low mass binary composed of a 1.05 Msun red giant and a 0.6 Msun companion has been followed for five orbits of the system using a high resolution method in three spatial dimensions. During the rapid inspiral phase, the interaction of the companion with the red giant's extended atmosphere causes about 25% of the common envelope to be ejected from the system, with mass continuing to be lost at the end of the simulation at a rate ~ 2 Msun/yr. In the process the resulting loss of angular momentum and energy reduces the orbital separation by a factor of seven. After this inspiral phase the eccentricity of the orbit rapidly decreases with time. The gravitational drag dominates hydrodynamic drag at all times in the evolution, and the commonly-used Bondi-Hoyle-Lyttleton prescription for estimating the accretion rate onto the companion significantly overestimates the true rate. On scales comparable to the orbital separation, the gas flow in the orbital plane in the vicinity of the two cores is subsonic with the gas nearly corotating with the red giant core and circulating about the red giant companion. On larger scales, 90% of the outflow is contained within 30 degrees of the orbital plane, and the spiral shocks in this material leave an imprint on the density and velocity structure. Of the energy released by the inspiral of the cores, only about 25% goes toward ejection of the envelope.Comment: 18 pages, 11 figures, submitted to ApJ; accepted versio

    Endoplasmic reticulum stress-induced release and binding of calreticulin from human ovarian cancer cells

    Get PDF
    BACKGROUND: Calreticulin (CRT) is an endoplasmic reticulum (ER) chaperone, but can appear surface bound on cancers cells, including ovarian cancers (OC). We investigated at what stage of cell viability, CRT appeared associated with surface of human OC cells. CRT on pre-apoptotic tumour cells is thought to initiate their eradication via a process termed immunogenic cell death (ICD). METHODS: We treated OC cells with the chemotherapeutic-doxorubicin (DX) known to induce translocation of CRT to some tumour cell surfaces, with and without the ER stressor-thapsigargin (TG)-and/or an ER stress inhibitor-TUDCA. We monitored translocation/release of CRT in pre-apoptotic cells by flow cytometry, immunoblotting and ELISA. We investigated the difference in binding of FITC-CRT to pre-apoptotic, apoptotic and necrotic cells and the ability of extracellular CRT to generate immature dendritic cells from THP-1 monocytes. RESULTS: Dx-treatment increased endogenously released CRT and extracellular FITC_CRT binding to human pre-apoptotic OC cells. DX and TG also promoted cell death in OC cells which also increased CRT release. These cellular responses were significantly inhibited by TUDCA, suggesting that ER stress is partially responsible for the changes in CRT cellular distribution. Extracellular CRT induces maturation of THP-1 towards a imDC phenotype, an important component of ICD. CONCLUSION: Collectively, these cellular responses suggest that ER stress is partially responsible for the changes in CRT cellular distribution. ER-stress regulates in part the release and binding of CRT to human OC cells where it may play a role in ICD

    Frequency of Th17 CD20+ cells in the peripheral blood of rheumatoid arthritis patients is higher compared to healthy subjects

    Get PDF
    addresses: Peninsula Medical School, University of Exeter, Heavitree Road, Exeter EX1 2LU, UK. [email protected]: PMCID: PMC3334661types: Journal Article; Research Support, Non-U.S. Gov'tRheumatoid arthritis (RA) is considered a T cell driven autoimmune disease, therefore, the ability of B cell depleting biologics, e.g., anti-CD20 antibodies, to alleviate RA is unclear. This study examined the proportions of IL-17-secreting lymphocytes in the blood of healthy subjects and RA patients and determined if Th17 cells belong to a CD20+ subset of T cells

    Tourist species bias estimates of extrapolated species density in dispersive taxa: a case study from a litter beetle assemblage in temperate woodland

    Get PDF
    Extrapolative nonparametric estimators of species density are commonly used in community ecology. However, they are dependent on either (1) their use on non-dispersive taxa, or (2) the ability to separate tourists from residents in dispersive taxa. We undertook ten years of leaf litter sampling in an ancient woodland in the New Forest, Southern England. We identi- fied all the beetles from those samples and assigned them a residency status (residents, stratum tourists, and habitat tourists). Extrapolations, using the Chao 2, first- and second-order jackknife, and bootstrap approaches, of all sampled beetles all showed large overestimates of species richness when compared with extrapolations based on just residents. We recommend that the estimators should be used with caution as estimates of actual species density for dispersive taxa unless the natural history of most species in a community is well known. This applies especially to tropical ecosystems where many species have not been described. This reinforces the need for more descriptive natural history

    Lymphocytes from rheumatoid arthritis patients have elevated levels of intracellular peroxiredoxin 2, and a greater frequency of cells with exofacial peroxiredoxin 2, compared with healthy human lymphocytes

    Get PDF
    AbstractPeroxiredoxin 2 has immune regulatory functions, but its expression in human peripheral blood lymphocytes and levels in extracellular fluid in healthy subjects and rheumatoid arthritis patients are poorly described. In the present study, the median intracellular peroxiredoxin 2 protein content of lymphocytes from rheumatoid arthritis patients was more than two-fold higher compared with healthy subjects’ lymphocytes. Intracellular peroxiredoxin 3 levels were similar in healthy and rheumatoid arthritis lymphocytes. Flow cytometry detected peroxiredoxin 2 on the surface of ca. 8% of T cells and ca. 56% of B cells (median % values) of all subjects analyzed. Exofacial thioredoxin-1 was also observed. In the total lymphocyte population from rheumatoid arthritis patients, few cells (median, 6%) displayed surface peroxiredoxin 2. In contrast, a significantly increased proportion of interleukin-17+ve lymphocytes were exofacially peroxiredoxin 2+ve (median, 39%). Prdx2 was also detected in human extracellular fluids. We suggest that crucial inflammatory cell subsets, i.e. interleukin-17+ve T cells, exhibit increased exofacial redox-regulating enzymes and that peroxiredoxin 2 may be involved in the persistence of pro-inflammatory cells in chronic inflammation

    Assessing the Australian termite diversity anomaly: how habitat and rainfall affect termite assemblages

    Get PDF
    Termites are important ecosystem engineers in tropical habitats, with different feeding groups able to decompose wood, grass, litter, and soil organic matter. In most tropical regions, termite abundance and species diversity are assumed to increase with rainfall, with highest levels found in rainforests. However, in the Australian tropics, this pattern is thought to be reversed, with lower species richness and termite abundance found in rainforest than drier habitats. The potential mechanisms underlying this pattern remain unclear. We compared termite assemblages (abundance, activity, diversity, and feeding group composition) across five sites along a precipitation gradient (ranging from ∼800 to 4,000 mm annual rainfall), spanning dry and wet savanna habitats, wet sclerophyll, and lowland and upland rainforests in tropical North Queensland. Moving from dry to wet habitats, we observed dramatic decreases in termite abundance in both mounds and dead wood occupancy, with greater abundance and activity at savanna sites (low precipitation) compared with rainforest or sclerophyll sites (high precipitation). We also observed a turnover in termite species and feeding group diversity across sites that were close together, but in different habitats. Termite species and feeding group richness were highest in savanna sites, with 13 termite species from wood-, litter-, grass-, dung-, and soil-feeding groups, while only five termite species were encountered in rainforest and wet sclerophyll sites—all wood feeders. These results suggest that the Australian termite diversity anomaly may be partly driven by how specific feeding groups colonized habitats across Australia. Consequently, termites in Australian rainforests may be less important in ecosystem processes, such as carbon and nutrient cycling during decomposition, compared with termites in other tropical rainforests
    corecore