160 research outputs found

    An improved hydrodynamic model for percolation and drainage dynamics for household and agricultural waste beds

    Get PDF
    This study focuses on the hydrodynamic modelling of percolation and drainage cycles in the context of solid-state anaerobic digestion and fermentation (VFA platform) of household solid wastes (HSW) in leach bed reactors. Attention was given to the characterization of the water distribution and hydrodynamic properties of the beds. The experimental procedure enabled the measurement of water content in waste beds at different states of compaction during injection and drainage, and this for two types of HSW and for two other type of wastes. A numerical model, set up with experimental data from water content measurements, highlighted that a capillary-free dual-porosity model was not able to correctly reproduce all the hydrodynamic features and particularly the drainage dynamics. The model was improved by adding a reservoir water fraction to macroporosity which allowed to correctly simulate dynamics. This model, validated with data obtained from agricultural wastes, enabled to explain more precisely the water behaviour during percolation processes and these results should be useful for driving either solid-state anaerobic digestion or fermentation reactors. Indeed, this implies that the recirculation regime will impact the renewal of the immobile water fraction in macroporosity, inducing different concentration levels of fermentation products in the leachate

    Approaching Zero-Temperature Metallic States in Mesoscopic Superconductor-Normal-Superconductor Arrays

    Full text link
    Systems of superconducting islands placed on normal metal films offer tunable realizations of two-dimensional (2D) superconductivity; they can thus elucidate open questions regarding the nature of 2D superconductors and competing states. In particular, island systems have been predicted to exhibit zero-temperature metallic states. Although evidence exists for such metallic states in some 2D systems, their character is not well understood: the conventional theory of metals cannot explain them, and their properties are difficult to tune. Here, we characterize the superconducting transitions in mesoscopic island-array systems as a function of island thickness and spacing. We observe two transitions in the progression to superconductivity; both transition temperatures exhibit unexpectedly strong depression for widely spaced islands. These depressions are consistent with the system approaching zero-temperature metallic states. The nature of the transitions and the state between them is explained using a phenomenological model involving the stabilization of superconductivity on each island via a weak coupling to and feedback from its neighbors.Comment: 15 pages, 5 figure

    A Threshold Value for the Time Delay to TB Diagnosis

    Get PDF
    The original publication is available at http:/www.plosone.orgIncludes bibliographyBackgound. In many communities where TB occurs at high incidence, the major force driving the epidemic is transmission. It is plausible that the typical long delay from the onset of infectious disease to diagnosis and commencement of treatment is almost certainly the major factor contributing to the high rate of transmission. Methodology/Principal Findings. This study is confined to communities which are epidemiologically relatively isolated and which have low HIV incidence. The consequences of delays to diagnosis are analyzed and the existence of a threshold delay value is demonstrated. It is shown that unless a sufficient number of cases are detected before this threshold, the epidemic will escalate. The method used for the analysis avoids the standard computer integration of systems of differential equations since the intention is to present a line of reasoning that reveals the essential dynamics of an epidemic in an intuitively clear way that is nevertheless quantitatively realistic. Conclusions/Significance. The analysis presented here shows that typical delays to diagnosis present a major obstacle to the control of a TB epidemic. Control can be achieved by optimizing the rapid identification of TB cases together with measures to increase the threshold value. A calculated and aggressive program is therefore necessary in order to bring about a reduction in the prevalence of TB in a community by decreasing the time to diagnosis in all its ramifications. Intervention strategies to increase the threshold value relative to the time to diagnosis and which thereby decrease disease incidence are discussed. © 2007 Uys et al.Publishers' Versio

    Feedback inhibition of the general phenylpropanoid and flavonol biosynthetic pathways upon a compromised flavonol-3-O-glycosylation

    Get PDF
    Flavonols, phenylalanine-derived secondary metabolites, have protective and regulatory functions in plants. In Arabidopsis thaliana, they are consecutively glycosylated at their 3-OH and 7-OH groups. UGT78D1 and UGT78D2 are the major flavonol 3-O-glycosyltransferases in Arabidopsis leaves. The ugt78d1 ugt78d2 double mutant, which was strongly compromised in the initial 3-O-glycosylation, showed a severe and specific repression of flavonol biosynthesis, retaining only one-third of the wild-type level. This metabolic phenotype was associated with a repressed transcription of several flavonol biosynthetic genes including the committed step chalcone synthase [(CHS) or TRANSPARENT TESTA 4 (TT4)]. Furthermore, the committed step of the upstream, general phenylpropanoid pathway, phenylalanine ammonia-lyase (PAL), was down-regulated in its enzyme activity and in the transcription of the flavonol-related PAL1 and PAL2. However, a complete blocking of flavonoid biosynthesis at CHS released PAL inhibition in a tt4 ugt78d1 ugt78d2 line. PAL activity was even enhanced in the flavonol synthase 1 mutant, which compromises the final formation of flavonol aglycones. The dependence of the PAL feedback inhibition on flavonols was confirmed by chemical complementation of tt4 ugt78d1 ugt78d2 using naringenin, a downstream flavonoid intermediate, which restored the PAL repression. Although aglycones were not analytically detectable, this study provides genetic evidence for a novel, flavonol-dependent feedback inhibition of the flavonol biosynthetic pathway and PAL. It was conditioned by the compromised flavonol-3-O-conjugation and a decrease in flavonol content, yet dependent on a residual, flavonol synthase 1 (FLS1)-related capacity to form flavonol aglycones. Thus, this regulation would not react to a reduced metabolic flux into flavonol biosynthesis, but it might prevent the accumulation of non-glycosylated, toxic flavonols

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men
    • 

    corecore