1,598 research outputs found

    An Architecture to Enable Autonomous Control of Spacecraft

    Get PDF
    Autonomy is required for manned spacecraft missions distant enough that light-time communication delays make ground-based mission control infeasible. Presently, ground controllers develop a complete schedule of power modes for all spacecraft components based on a large number of factors. The proposed architecture is an early attempt to formalize and automate this process using on-vehicle computation resources. In order to demonstrate this architecture, an autonomous electrical power system controller and vehicle Mission Manager are constructed. These two components are designed to work together in order to plan upcoming load use as well as respond to unanticipated deviations from the plan. The communication protocol was developed using "paper" simulations prior to formally encoding the messages and developing software to implement the required functionality. These software routines exchange data via TCP/IP sockets with the Mission Manager operating at NASA Ames Research Center and the autonomous power controller running at NASA Glenn Research Center. The interconnected systems are tested and shown to be effective at planning the operation of a simulated quasi-steady state spacecraft power system and responding to unexpected disturbances

    Illness Labels and Social Distance

    Get PDF
    The authors examine a key proposition in the modified labeling theory—that a psychiatric label increases vulnerability to negative evaluation and social rejection—using an experimental design wherein female participants interact with a female teammate over a computer. The authors also evaluate a hypothesis derived from the disease-avoidance account of disgust by examining this same process for a nonpsychiatric illness: food poisoning. In addition, they introduce a composite measure of social distance behavior that is easy to implement in a laboratory experiment. The authors find, as predicted, that women seek greater social distance from teammates with a history of psychiatric or food poisoning hospitalization than they do from teammates with no hospitalization history. But, contrary to predictions, a teammate’s hospitalization history does not affect participants’ ratings of her likability. The results also do not vary significantly by psychiatric diagnosis (depression vs. schizophrenia), suggesting that the stigma of depression may be just as strong as the stigma of schizophrenia when information about symptoms is not available. The authors discuss the implications of these findings for the modified labeling theory of mental illness and for the literature on disgust and stigma. They also outline avenues for future research.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    An exploratory analysis of the impact of family functioning on treatment for depression in adolescents.

    Get PDF
    This article explores aspects of family environment and parent-child conflict that may predict or moderate response to acute treatments among depressed adolescents (N = 439) randomly assigned to fluoxetine, cognitive behavioral therapy, their combination, or placebo. Outcomes were Week 12 scores on measures of depression and global impairment. Of 20 candidate variables, one predictor emerged: Across treatments, adolescents with mothers who reported less parent-child conflict were more likely to benefit than their counterparts. When family functioning moderated outcome, adolescents who endorsed more negative environments were more likely to benefit from fluoxetine. Similarly, when moderating effects were seen on cognitive behavioral therapy conditions, they were in the direction of being less effective among teens reporting poorer family environments

    Revisiting spin ice physics in the ferromagnetic Ising pyrochlore Pr2_2Sn2_2O7_7

    Full text link
    Pyrochlore materials are characterized by their hallmark network of corner-sharing rare-earth tetrahedra, which can produce a wide array of complex magnetic ground states. Ferromagnetic Ising pyrochlores often obey the "two-in-two-out" spin ice rules, which can lead to a highly-degenerate spin structure. Large moment systems, such as Ho2_2Ti2_2O7_7 and Dy2_2Ti2_2O7_7, tend to host a classical spin ice state with low-temperature spin freezing and emergent magnetic monopoles. Systems with smaller effective moments, such as Pr3+^{3+}-based pyrochlores, have been proposed as excellent candidates for hosting a "quantum spin ice" characterized by entanglement and a slew of exotic quasiparticle excitations. However, experimental evidence for a quantum spin ice state has remained elusive. Here, we show that the low-temperature magnetic properties of Pr2_2Sn2_2O7_7 satisfy several important criteria for continued consideration as a quantum spin ice. We find that Pr2_2Sn2_2O7_7 exhibits a partially spin-frozen ground state with a large volume fraction of dynamic magnetism. Our comprehensive bulk characterization and neutron scattering measurements enable us to map out the magnetic field-temperature phase diagram, producing results consistent with expectations for a ferromagnetic Ising pyrochlore. We identify key hallmarks of spin ice physics, and show that the application of small magnetic fields (ÎŒ0Hc∌\mu_0 H_c \sim0.75T) suppresses the spin ice state and induces a long-range ordered magnetic structure. Together, our work clarifies the current state of Pr2_2Sn2_2O7_7 and encourages future studies aimed at exploring the potential for a quantum spin ice ground state in this system

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    • 

    corecore