147 research outputs found

    Calibrated Click-Through Auctions: An Information Design Approach

    Get PDF
    We analyze the optimal information design in a click-through auction with fixed valuations per click, but stochastic click-through rates. While the auctioneer takes as given the auction rule of the click-through auction, namely the generalized second-price auction, the auctioneer can design the information flow regarding the click-through rates among the bidders. A natural requirement in this context is to ask for the information structure to be calibrated in the learning sense. With this constraint, the auction needs to rank the ads by a product of the bid and an unbiased estimator of the click-through rates, and the task of designing an optimal information structure is thus reduced to the task of designing an optimal unbiased estimator. We show that in a symmetric setting with uncertainty about the click-through rates, the optimal information structure attains both social efficiency and surplus extraction. The optimal information structure requires private (rather than public) signals to the bidders. It also requires correlated (rather than independent) signals, even when the underlying uncertainty regarding the click-through rates is independent. Beyond symmetric settings, we show that the optimal information structure requires partial information disclosure

    A Soft Budget Constraint Explanation for the Venture Capital Cycle

    Get PDF
    We explore why venture capital funds limit the amount of capital they raise and do not reinvest the proceeds. This structure is puzzling because it leads to a succession of several funds financing each new venture which multiplies the well known agency problems. We argue that an inside investor cannot provide a hard budget constraint while a less well informed outsider can. Therefore, the venture capitalist delegates the continuation decision to the outsider by ex ante restricting the amount of capital he has under management. The soft budget constraint problem becomes the more important the higher the entrepreneur’s private benefits are and the higher the probability of failure of a project is

    Malaria with neurological involvement in Ugandan children: effect on cognitive ability, academic achievement and behaviour

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria is a leading cause of ill health and neuro-disability in children in sub-Saharan Africa. Impaired cognition is a common outcome of malaria with neurological involvement. There is also a possibility that academic achievement may be affected by malaria with neurological involvement given the association between cognitive ability and academic achievement. This study investigated the effect of malaria with neurological involvement on cognitive ability, behaviour and academic achievement.</p> <p>Methods</p> <p>This prospective case-control study was carried out in Kampala City, Uganda between February 2008 and October 2010. Sixty-two children with a history of malaria with neurological involvement were followed up and given assessments for cognitive ability (working memory, reasoning, learning, visual spatial skills and attention), behaviour (internalizing and externalizing problems) and academic achievement (arithmetic, spelling and reading) three months after the illness. Sixty-one community controls recruited from the homes or neighbouring families of the cases were also given the same assessments. Tests scores of the two groups were compared using analysis of covariance with age, sex, level of education, nutritional status and quality of the home environment as covariates. This study was approved by the relevant ethical bodies and informed consent sought from the caregivers.</p> <p>Results</p> <p>Children in the malaria group had more behavioural problems than the community controls for internalizing problems (estimated mean difference = -3.71, 95% confidence interval (CI), = -6.34 to -1.08, p = 0.007). There was marginal evidence of lower attention scores (0.40, CI = -0.05 to 0.86, p = 0.09). However, excluding one child from the analyses who was unable to perform the tests affected the attention scores to borderline significance (0.32, CI, = 0.01 to 0.62, p = 0.05). No significant differences were observed in other cognitive abilities or in academic achievement scores.</p> <p>Conclusion</p> <p>Malaria with neurological involvement affects behaviour, with a minimal effect on attention but no detectable effect on academic achievement at three months post discharge. This study provides evidence that development of cognitive deficits after malaria with neurological involvement could be gradual with less effect observed in the short term compared to the long term.</p

    Clinical Features and Serum Biomarkers in HIV Immune Reconstitution Inflammatory Syndrome after Cryptococcal Meningitis: A Prospective Cohort Study

    Get PDF
    David Boulware and colleagues investigate clinical features in a prospective cohort with AIDS and recent cryptococcal meningitis after initiation of antiretroviral therapy to identify biomarkers for prediction and diagnosis of CM-IRIS (cryptococcal meninigitis-related immune reconstitution inflammatory syndrome)

    Stellar Astrophysics and Exoplanet Science with the Maunakea Spectroscopic Explorer (MSE)

    Full text link
    The Maunakea Spectroscopic Explorer (MSE) is a planned 11.25-m aperture facility with a 1.5 square degree field of view that will be fully dedicated to multi-object spectroscopy. A rebirth of the 3.6m Canada-France-Hawaii Telescope on Maunakea, MSE will use 4332 fibers operating at three different resolving powers (R ~ 2500, 6000, 40000) across a wavelength range of 0.36-1.8mum, with dynamical fiber positioning that allows fibers to match the exposure times of individual objects. MSE will enable spectroscopic surveys with unprecedented scale and sensitivity by collecting millions of spectra per year down to limiting magnitudes of g ~ 20-24 mag, with a nominal velocity precision of ~100 m/s in high-resolution mode. This white paper describes science cases for stellar astrophysics and exoplanet science using MSE, including the discovery and atmospheric characterization of exoplanets and substellar objects, stellar physics with star clusters, asteroseismology of solar-like oscillators and opacity-driven pulsators, studies of stellar rotation, activity, and multiplicity, as well as the chemical characterization of AGB and extremely metal-poor stars.Comment: 31 pages, 11 figures; To appear as a chapter for the Detailed Science Case of the Maunakea Spectroscopic Explore

    Weighing stars from birth to death: mass determination methods across the HRD

    Get PDF
    The mass of a star is the most fundamental parameter for its structure, evolution, and final fate. It is particularly important for any kind of stellar archaeology and characterization of exoplanets. There exists a variety of methods in astronomy to estimate or determine it. In this review we present a significant number of such methods, beginning with the most direct and model-independent approach using detached eclipsing binaries. We then move to more indirect and model-dependent methods, such as the quite commonly used isochrone or stellar track fitting. The arrival of quantitative asteroseismology has opened a completely new approach to determine stellar masses and to complement and improve the accuracy of other methods. We include methods for different evolutionary stages, from the pre-main sequence to evolved (super)giants and final remnants. For all methods uncertainties and restrictions will be discussed. We provide lists of altogether more than 200 benchmark stars with relative mass accuracies between [0.3,2]%[0.3,2]\% for the covered mass range of M\in [0.1,16]\,\msun, 75%75\% of which are stars burning hydrogen in their core and the other 25%25\% covering all other evolved stages. We close with a recommendation how to combine various methods to arrive at a "mass-ladder" for stars.Comment: Invited review article for The Astronomy and Astrophysics Review. 146 pages, 16 figures, 11 tables. Accepted version by the Journal. It includes summary figure of accuracy/precision of methods for mass ranges and summary table for individual method

    Weighing stars from birth to death : mass determination methods across the HRD

    Get PDF
    Funding: C.A., J.S.G.M., and M.G.P. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 670519: MAMSIE). N.B. gratefully acknowledge financial support from the Royal Society (University Research Fellowships) and from the European Research Council (ERC-CoG-646928, Multi-Pop).The mass of a star is the most fundamental parameter for its structure, evolution, and final fate. It is particularly important for any kind of stellar archaeology and characterization of exoplanets. There exist a variety of methods in astronomy to estimate or determine it. In this review we present a significant number of such methods, beginning with the most direct and model-independent approach using detached eclipsing binaries. We then move to more indirect and model-dependent methods, such as the quite commonly used isochrone or stellar track fitting. The arrival of quantitative asteroseismology has opened a completely new approach to determine stellar masses and to complement and improve the accuracy of other methods. We include methods for different evolutionary stages, from the pre-main sequence to evolved (super)giants and final remnants. For all methods uncertainties and restrictions will be discussed. We provide lists of altogether more than 200 benchmark stars with relative mass accuracies between [0.3 ,2 ]% for the covered mass range of M ∈[0.1 ,16 ] M⊙ , 75 % of which are stars burning hydrogen in their core and the other 25 % covering all other evolved stages. We close with a recommendation how to combine various methods to arrive at a "mass-ladder" for stars.PostprintPeer reviewe
    corecore