2,472 research outputs found

    COMPETITIVE GRANTS AND THE FUNDING OF AGRICULTURAL RESEARCH IN THE U.S.

    Get PDF
    To increase the efficiency of the public agricultural R&D system, expanded use of competitive grants to fund state institutions has been advocated. This paper characterizes different funding instruments and empirically assesses the effects of changes in mechanism use. Factors associated with greater levels of competitive grants are modeled.Research and Development/Tech Change/Emerging Technologies,

    Patterns of MMPI-2-Restructured Form (MMPI-2-RF) Validity Scale Scores Observed Across Veteran Affairs Settings

    Get PDF
    The purpose of this investigation is to provide descriptive information on veteran response styles for a variety of VA referral types using the Minnesota Multiphasic Personality Inventory (MMPI)-2- Restructured Form (MMPI-2-RF), which has well-supported protocol validity scales. The sample included 17,640 veterans who were administered the MMPI-2-RF between when it was introduced to the VA system in 2013 until May 31, 2015 at any VA in the United States. This study examines frequencies of protocol invalidity based on the MMPI-2-RF’s validity scales and provides comprehensive descriptive findings on validity scale scores within the VA. Three distinct trends can be seen. First, a majority of the sample did not elevate any of the validity scales beyond their recommended interpretive cut-scores, indicating that scores on the substantive scales would be deemed valid and interpretable in those cases. Second, elevation rates are higher for the overreporting scales in comparison to the underreporting and non-content-based invalid responding scales. Lastly, a majority of those with an elevation on one overreporting validity indicator also had an elevation on at least one other overreporting scale. Implications for practice and the utility of the MMPI-2-RF within the VA are discussed

    Modelling studies of the hazards posed by liquid hydrogen use in civil aviation

    Get PDF
    As part of the ENABLEH2 project, modelling studies have been carried out to examine liquid hydrogen release and dispersion behaviour for different LH2 aircraft and airport infrastructure leak/spill accident scenarios. The FLACS CFD model has been used to simulate the potential hazard effects following an accidental LH2 leak, including the extent of the flammable LH2 clouds formed, magnitude of explosion overpressures and pool fire radiation hazards. A comparison has also been made between the relative hazard consequences of using LH2 with conventional Jet A/A-1 fuel. The results indicate that in the event of accidental fuel leak/spill LH2 has some safety advantages over Jet A/A-1 but will also introduce additional hazards not found with Jet A/A-1 that will need to be carefully managed and mitigated against.European Union funding: 76924

    Complement is activated in progressive multiple sclerosis cortical grey matter lesions

    Get PDF
    The symptoms of multiple sclerosis (MS) are caused by damage to myelin and nerve cells in the brain and spinal cord. Inflammation is tightly linked with neurodegeneration, and it is the accumulation of neurodegeneration that underlies increasing neurological disability in progressive MS. Determining pathological mechanisms at play in MS grey matter is therefore a key to our understanding of disease progression

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure

    Autophosphorylation-based calcium (Ca2+) sensitivity priming and Ca2+/Calmodulin inhibition of Arabidopsis thaliana Ca2+-dependent protein kinase 28 (CPK28)

    Get PDF
    Plant calcium (Ca2+) dependent protein kinases (CPKs) are composed of a dual specificity (Ser/Thr and Tyr) kinase domain tethered to a Calmodulin-like domain (CLD) via an autoinhibitory junction (J) and represent the primary Ca2+-dependent protein kinase activities in plant systems. While regulation of CPKs by Ca2+ has been extensively studied, the contribution of autophosphorylation in the control of CPK activity is less well understood. Furthermore, whether Calmodulin (CaM) contributes to CPK regulation, as is the case for Ca2+/CaM-dependent protein kinases (CaMKs) outside the plant lineage, remains an open question. We screened a subset of plant CPKs for CaM-binding and found that CPK28 is a high-affinity Ca2+/CaM-binding protein. Using synthetic peptides and native gel electrophoresis, we coarsely mapped the CaM-binding domain to a site within the CPK28 J domain that overlaps with the known site of intramolecular interaction between the J domain and CLD. Peptide kinase activity of fully dephosphorylated CPK28 was Ca2+-responsive and inhibited by Ca2+/CaM. Using in situ autophosphorylated protein, we expand on the known set of CPK28 autophosphorylation sites, and demonstrate that, unexpectedly, autophosphorylated CPK28 had enhanced activity at physiological concentrations of Ca2+ compared to dephosphorylated protein, suggesting that autophosphorylation functions to prime CPK28 for Ca2+-activation. Furthermore, CPK28 autophosphorylation substantially reduced sensitivity of the kinase to Ca2+/CaM inhibition. Overall, our analyses uncover new complexities in the control of CPK28 and provide mechanistic support for Ca2+ signaling specificity through Ca2+ sensor priming

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis
    corecore