5,410 research outputs found
Post-Newtonian Dynamics in Dense Star Clusters: Highly-Eccentric, Highly-Spinning, and Repeated Binary Black Hole Mergers
We present models of realistic globular clusters with post-Newtonian dynamics
for black holes. By modeling the relativistic accelerations and
gravitational-wave emission in isolated binaries and during three- and
four-body encounters, we find that nearly half of all binary black hole mergers
occur inside the cluster, with about 10% of those mergers entering the
LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead
to the birth of a second generation of black holes with larger masses and high
spins, which, depending on the black hole natal spins, can sometimes be
retained in the cluster and merge again. As a result, globular clusters can
produce merging binaries with detectable spins regardless of the birth spins of
black holes formed from massive stars. These second-generation black holes
would also populate any upper mass gap created by pair-instability supernovae.Comment: 9 pages, 3 figures, 2 appendices. To appear in Physical Review
Letter
A match coefficient approach for damage imaging in structural components by ultrasonic synthetic aperture focus
Ultrasonic Synthetic Aperture Focus (SAF) techniques are commonly used to image structural defects. In this paper, a variation of SAF based on ideas borrowed from Matched Field Processing (MFP) is evaluated to reduce artifacts and sidelobes of the resulting images. In particular, instead of considering the full RF ultrasonic waveforms for the SAF time backpropagation, only selected features from the waveforms are utilized to form a “data vector” and a “replica” (expected) vector of MFP. These vectors are adaptive for the pair of transmitter-receiver and the focus point. The image is created as a matched filter between these two vectors. Experimental results are shown for an isotropic and homogenous metallic plate with simulated defects, probed by six piezoelectric patches used as receivers or transmitters
Adaptive walks in a gene network model of morphogenesis: insights into the Cambrian explosion
The emergence of complex patterns of organization close to the Cambrian
boundary is known to have happened over a (geologically) short period of time.
It involved the rapid diversification of body plans and stands as one of the
major transitions in evolution. How it took place is a controversial issue.
Here we explore this problem by considering a simple model of pattern formation
in multicellular organisms. By modeling gene network-based morphogenesis and
its evolution through adaptive walks, we explore the question of how
combinatorial explosions might have been actually involved in the Cambrian
event. Here we show that a small amount of genetic complexity including both
gene regulation and cell-cell signaling allows one to generate an extraordinary
repertoire of stable spatial patterns of gene expression compatible with
observed anteroposterior patterns in early development of metazoans. The
consequences for the understanding of the tempo and mode of the Cambrian event
are outlined.Comment: to appear in International Journal of Developmental Biology, special
issue on Evo-Devo (2003
Sowing the seeds of massive black holes in small galaxies: Young clusters as the building blocks of Ultra-Compact-Dwarf Galaxies
Interacting galaxies often have complexes of hundreds of young stellar
clusters of individual masses in regions that are a few
hundred parsecs across. These cluster complexes interact dynamically, and their
coalescence is a candidate for the origin of some ultracompact dwarf galaxies
(UCDs). Individual clusters with short relaxation times are candidates for the
production of intermediate-mass black holes of a few hundred solar masses, via
runaway stellar collisions prior to the first supernovae in a cluster. It is
therefore possible that a cluster complex hosts multiple intermediate-mass
black holes that may be ejected from their individual clusters due to mergers
or binary processes, but bound to the complex as a whole. Here we explore the
dynamical interaction between initially free-flying massive black holes and
clusters in an evolving cluster complex. We find that, after hitting some
clusters, it is plausible that the massive black hole will be captured in an
ultracompact dwarf forming near the center of the complex. In the process, the
hole typically triggers electromagnetic flares via stellar disruptions, and is
also likely to be a prominent source of gravitational radiation for the
advanced ground-based detectors LIGO and VIRGO. We also discuss other
implications of this scenario, notably that the central black hole could be
considerably larger than expected in other formation scenarios for ultracompact
dwarfs.Comment: 15 pages, published in ApJ; for movies, please visit
http://members.aei.mpg.de/amaro-seoane/ultra-compact-dwarf-galaxie
Composition operators acting on weighted Dirichlet spaces
We study composition operators acting on weighted Dirichlet spaces. We obtain estimates for the essential norm, describe the membership in Schatten-Von Neumann ideals and characterize the composition operators with closed range
On the length and area spectrum of analytic convex domains
Area-preserving twist maps have at least two different (p, q)-periodic orbits and every (p, q)-periodic orbit has its (p, q)-periodic action for suitable couples (p, q). We establish an exponentially small upper bound for the differences of (p, q)-periodic actions when the map is analytic on a (m, n)-resonant rotational invariant curve (resonant RIC) and p/q is 'sufficiently close' to m/n. The exponent in this upper bound is closely related to the analyticity strip width of a suitable angular variable. The result is obtained in two steps. First, we prove a Neishtadt-like theorem, in which the n-th power of the twist map is written as an integrable twist map plus an exponentially small remainder on the distance to the RIC. Second,
we apply the MacKay-Meiss-Percival action principle. We apply our exponentially small upper bound to several billiard problems. The resonant RIC is a boundary of the phase space in almost all of them. For instance, we show that the lengths (respectively, areas) of all the (1, q)-periodic billiard (respectively, dual billiard) trajectories inside (respectively, outside) analytic strictly convex domains are exponentially close in the period q. This improves some classical results of Marvizi, Melrose, Colin de Verdiere, Tabachnikov, and others about the smooth case.Peer ReviewedPostprint (author's final draft
Progetto e realizzazione di un setup per l’analisi del rolling contact: risultati preliminari
Presso il Dipartimento di Ingegneria Meccanica dell’Università di Cagliari (DIMECA) è attiva, da alcuni anni, una linea di ricerca orientata alla valutazione dei principali parametri di contatto (forma e dimensioni dell’area nominale di contatto, area reale di contatto, distribuzione delle pressioni di contatto) in interfacce metalliche, mediante una tecnica sperimentale basata sull’impiego di onde ultrasoniche.
L’applicazione di questo metodo ha consentito di ottenere informazioni su contatti a geometria semplice quali, ad esempio, quelli sfera-piano [1-2] su casi più complessi di rilevante impatto ingegneristico come quello relativo all’interazione tra ruota e rotaia ferroviaria [3-4].
Il principale punto di forza dell’indagine ultrasonica risiede nella sua capacità di fornire informazioni sullo stato del contatto a partire da misure del coefficiente di riflessione all’interfaccia, garantendo in tal modo sia la più completa non-invasività (nessun mezzo viene
ad interporsi tra i corpi a contatto) e sia la possibilità di investigare “in process”. In particolare quest’ultima peculiarità permette di monitorare le variazioni del parametri di contatto in tempo reale (ad esempio a seguito di variazioni nel carico applicato o nella
configurazione geometrica dell’accoppiamento) senza che sia necessario rimuovere i corpi per esaminare gli effetti che tali modifiche hanno generato.
Appare importante sottolineare che, a tutt’oggi, la letteratura riporta esempi di impiego de metodo ultrasonico a problemi di contatto quasi esclusivamente nell’analisi di situazioni statiche. Tuttavia, è facilmente intuibile che la possibilità di estendere il campo di applicazione della tecnica a situazioni dinamiche, aumenterebbe in misura considerevole il range di casi di interesse ingegneristico potenzialmente testabili. In considerazione di ciò, il presente studio si pone come obiettivo principale quello di verificare la validità ed affidabilità del metodo ultrasonico per lo studio di situazioni dinamiche, con particolare riferimento a problemi di “rolling contact”
Optimizing periodicity and polymodality in noise-induced genetic oscillators
Many cellular functions are based on the rhythmic organization of biological
processes into self-repeating cascades of events. Some of these periodic
processes, such as the cell cycles of several species, exhibit conspicuous
irregularities in the form of period skippings, which lead to polymodal
distributions of cycle lengths. A recently proposed mechanism that accounts for
this quantized behavior is the stabilization of a Hopf-unstable state by
molecular noise. Here we investigate the effect of varying noise in a model
system, namely an excitable activator-repressor genetic circuit, that displays
this noise-induced stabilization effect. Our results show that an optimal noise
level enhances the regularity (coherence) of the cycles, in a form of coherence
resonance. Similar noise levels also optimize the multimodal nature of the
cycle lengths. Together, these results illustrate how molecular noise within a
minimal gene regulatory motif confers robust generation of polymodal patterns
of periodicity.Comment: 9 pages, 6 figure
Monitoring the Petermann Ice Island with TanDEM-X
This paper presents the processing of TanDEM-X acquisitions for the monitoring of the topography of the Petermann ice island. In this particular case the area under study is continuously moving and the acquisition geometry is changing, so the processing of the iceberg’s DEMs is challenging and additional effects are to be considered. The SAR processing chain used is presented and the results obtained summarized, showing the effects and limitations observed during the process
- …
