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Abstract. Area-preserving twist maps have at least two diffefgnt)-periodic orbits and
every(p, q)-periodic orbit has it§p, ¢)-periodic action for suitable couplés, ¢). We establish
an exponentially small upper bound for the difference$mof;)-periodic actions when the
map is analytic on gm, n)-resonant rotational invariant curve (resonant RIC) apd is
“sufficiently close” tom/n. The exponent in this upper bound is closely related to the
analyticity strip width of a suitable angular variable. Tiesult is obtained in two steps.
First, we prove a Neishtadt-like theorem, in which th¢h power of the twist map is written
as an integrable twist map plus an exponentially small redeion the distance to the RIC.
Second, we apply the MacKay-Meiss-Percival action prilecip

We apply our exponentially small upper bound to severakdl problems. The resonant
RIC is a boundary of the phase space in almost all of them. rsiamnce, we show that
the lengths (respectively, areas) of all tHeq)-periodic billiard (respectively, dual billiard)
trajectories inside (respectively, outside) analytiéctr convex domains are exponentially
close in the period;. This improves some classical results of Marvizi, MelroSelin de
Verdiére, Tabachnikov, and others about the smooth case.
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1. Introduction

Billiards were introduced by Birkhoff [4]. Ldf be a smooth strictly convex curve in the plane,
oriented counterclockwise, and tbe the billiard table enclosed iy Billiard trajectories
inside (2 consist of polygonal lines inscribed inwhose consecutive sides obey to the rule
“the angle of reflection is equal to the angle of incidenceée $18, 20, 36] for a general
description.

A (p,q)-periodic billiard trajectory forms a closed polygon wijhsides that makes
turns insidd”. Birkhoff [4] proved that there are at least two differentiioff (p, ¢)-periodic
billiard trajectories insidé€ for any relatively prime integersandq such thatl < p < q.

Let £9 be the supremum of the absolute values of the differenceSeofengths of
all such trajectories. The quantiti€é? were already studied by Marvizi and Melrose [25]
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and Colin de Verdiere [6] for smooth tables. The former atghproduced an asymptotic
expansion of the lengths fop, ¢)-periodic billiard trajectories approachihgwvhenp is fixed
andg — +o0. They saw that there exists a sequefig®.~,, depending only op andl’, such
that, if L% is the length of anyp, ¢)-periodic trajectory, then

Ik

LWPa) — p Length[T] + Z ﬁ’

k>1

q — o0, 1)

wherel; = L(T,p) = -2 (p J; /{2/3(s)d5)3, andx(s) is the curvature of* as a function
of the arc-length parameter The symbot< means that the series in the right hand side is
asymptotic toL»%. The asymptotic coefficienty = I,(T', p) can be explicitly written in
terms of the curvature(s). For instance, the explicit formulas for, I,, 3, andl, can be
found in [35]. Since the expansion of the lengths in powergdfcoincides for all these
(p, q)-periodic trajectoriesf»?) = O(¢~>°) for smooth strictly convex tables wheris fixed
andg — +oo. Colin de Verdiere studied the lengths of periodic trajeess close to an
elliptic (1, 2)-periodic trajectory on a smooth axisymmetric billiardlegkand found that the
quantitiesC™% are again beyond all order with respecyto

These works suggest that the supremum length differefiéés are exponentially small
in the periody for analytic strictly convex tables. Indeed, we have proted if ' is analytic
andp is a fixed positive integer, then there exiSta > 0 such that

£(Pa) < Ke—%aq/p’ 2)

for all integerq > 2 relatively prime withp. The exponenty is related to the width of

a complex strip where a certainperiodic angular coordinate is analytic. A more precise
statement is given in Theorem 5. The search for exponensaiall asymptotic formulas is
the natural challenge after obtaining the exponentiallglsapper bound (2). This problem
has been numerically tackled in [24], where we have conjedtdhat, ifI" is a generic
axisymmetric strictly convex algebraic curve, then

LD = A(q)g e, q — +o0,

where the positive exponentis half of the radius of convergence of the Borel transform of
the asymptotic series (1) antlq) is either a constant or an oscillating function. The proof of
this asymptotic formula is a work in progress.

Similar exponentially small upper bounds hold in otheriditl problems. We mention
two examples. First, fofp, ¢)-periodic billiard trajectories inside strictly convexaytic
tables of constant width whepw/q — 1/2. Second, for(p, ¢)-periodic billiard trajectories
inside strictly convex analytic tables in surfaces of cansturvature whep/q — 0.

The billiard dynamics close to the boundary has also beetiexturom the point of
view of KAM theory. Lazutkin [21] proved that there are intiely many caustics inside any
5% strictly convex table. These caustics accumulate at thadwny of the table, and have
Diophantine rotation numbers. Douady [11] improved theiltets C7 billiard tables.

A special remark on the relevance of these results is theviiollg. Kac [17] formulated
the inverse spectral problem for planar domains. That isstasdy how much geometric
information about() can be obtained from the Laplacian spectrum with homogeneou
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Dirichlet conditions onl". Andersson and Melrose [1] gave an explicit relation betwibe
length spectrum and the Laplacian spectrum. The lengthrspeof 2 is the union of the
lengths of all its(p, ¢)-periodic billiard trajectories and all the integer muléip of Length|[I'].
See also [25, 6].

Our results also apply to the dual billiards introduced by D& and popularized by
Moser [28] as a crude model for planetary motion. Some gérefaaences are [15, 5, 37, 36].
Let U be unbounded component &F \ T'. The dual billiard magpf : U — U is defined as
follows: f(z) is the reflection of: in the tangency point of the oriented tangent lind'to
throughz. Billiards and dual billiards are projective dual in the eph[37].

A (p, q)-periodic dual billiard trajectory forms a closed circumbed polygon withg
sides that makegsturns outsidd’. The area of &p, q)-periodic trajectory is the area enclosed
by the corresponding polygon, taking into account someipiidgities if p > 2. There are at
least two different Birkhoffp, ¢)-periodic dual billiard trajectories outsidefor any relatively
prime integerg andq such thay, > 3 and1 < p < q.

Tabachnikov [36, 37] studied the supremuttt9 of the absolute value of the differences
of the areas enclosed by all sudh ¢)-periodic trajectories for smooth tables. He proved that
there is a sequendey),>1, depending only of, such that, ifA19 is the area enclosed by
any (1, ¢)-periodic dual billiard trajectory, then

ALY = Area[Q)] + Z L

ok q — 00, (3)
k>1 q

wherea; = a;(I') = 5 [ £'/3(s)ds. Hence, the expansion of the areas in powerg of
coincides for all thes€l, q)-periodic trajectories, and sg,(»? = O(¢~>) for smooth strictly
convex dual tables whe(d — +oo. Douady [11] found the existence of infinitely many
invariant curves outside arty” strictly convex dual table. These invariant curves acciateul
at the boundary of the dual table and have Diophantine acotatiumbers.

In a completely analogous way to (classical) billiards, vaeéhproved that, once fixed
any positive integep, if I is analytic, then there exigt, o« > 0 such that

A(p,q) < Kef%aq/p7 (4)

for all integerq > 3 relatively prime withp. Once more, the exponentis related to the
width of a complex strip where a certairperiodic angular coordinate is analytic. The precise
statement is given in Theorem 8.

Still in the context of dual billiards, the points at infinitgn be seen ad, 2)-periodic
points, hence they form @, 2)-resonant RIC. Douady [11] found the existence of infinitely
many invariant curves outside ary® strictly convex dual table. These invariant curves
accumulate at infinity and have Diophantine rotation nursbé&te have proved that, once
fixed any constant > 1, if I is analytic, then there exigt, o > 0 such that

AP < Kexp (‘ \p/qﬂ—al/m) ’ ©)

for all relatively prime integerg andq such thatt < |2p—q| < L andq > 3. See Theorem 9.
The three exponents that appear in the exponentially small upper bounds (2), (4)
and (5) may be different, since each one is associated tdexatit analyticity strip width.
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Besides, all of these upper bounds follow directly from aggahupper bound about analytic
area-preserving twist maps with analytic resonant RICsukexplain it.

Classical and dual billiard maps are exact twist maps defamegn open cylinder when
written in suitable coordinates. Exact twist maps have beetly studied. They satisfy a
Lagrangian formulation and their orbits are stationarynpof the action functional. See for
instance [4, 27, 18].

Birkhoff [4] showed that the minima and minimax points of the ¢)-periodic action
correspond to two different Birkhoff, ¢)-periodic orbits of the twist map. A Birkhoff, ¢)-
periodic orbit is an orbit such that, afteiterates, performs exactjyrevolutions around the
cylinder and its points are ordered in the b@sas the ones following a rigid rotation of angle
p/q. Since there exist at least two different Birkhoff, ¢)-periodic orbits, we consider the
supremunm\ 9 of the absolute value of the differences of the actions anadiraf them. The
quantity A coincides withZ % and. A®% for classical and dual billiards, respectively.

Let AW, , be the difference of actions between the minimax and miriima)-periodic
orbits. Note that\»?) is an upper bound ak ¥, ,. Mather [26] used\WV,, as a criterion to
prove the existence of RICs of given irrational rotation ems. More concretely, he proved
that there exists a RIC with irrational rotation numbef and only if lim,,,,, AW, , = 0.

Another criterion related to the destruction of RICs, irstbase empirical, was proposed
by Greene. The destruction of a RIC with Diophantine rotatiamberp under perturbation
is related to a “sudden change from stability to instabibtyhe nearby periodic orbits” [13].
The stability of a periodic orbit is measured by the residdacKay [22] proved the criterion
in some contexts. In particular, for an analytic area-presg twist map, the residue of a
sequence of periodic orbits with rotation numbefg — o decays exponentially ifp — p/q/.
The same proof leads to a similar exponentially small bodrMather's AW,,,, asp/q — o.
Delshams and de la Llave [10] studied similar problems falic area-preserving nontwist
maps.

Generically RICs with a rational rotation number break ungerturbation [33, 31].
Nevertheless, there are situations in which some diststgual resonant RICs always exist.
See Sections 3 and 4 for several examples related to bilizddiual billiard maps.

Let us assume that we have an analytic exact twist map with @)-resonant RIC. That
is, a RIC whose points aren, n)-periodic. Then there exist some variablesy) in which
the resonant RIC is located & = 0} and then-th power of the exact twist map is a small
perturbation of the integrable twist mép,, y1) = (= + y, y). To be precise, it has the form

n=r+y+0@%), y=y+0()
Since then-th power map is real analytic, it can be extended to a congidexain of the form
Db, ={(z,y) € C/Z x C: |Sz| < a.,|y| < b.}.

The quantityu, plays a more important role thap. To be precise, we have proved that, once
fixed anya € (0, a.) andL > 1, there existds > 0 such that

APD < K exp <_‘27Ti|) 7
np —mg
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for any relatively prime integers and ¢ such thatl < |np — mgq| < L andgq > 1. See
Theorem 3 for a more detailed statement. This upper bounptisial becauser € (0, a.).
That is, the exponent can be taken as close to the analyticity strip widilas desired. The
constants’ may explode when tends tau,, so, in general, we can not take= a,.. A similar
optimal exponentially small upper bound was obtained ifj {[d2he setting of the splitting of
separatrices of weakly hyperbolic fixed points of analytazaa-preserving maps. The proof
of this optimal bound adds some extra technicalities, butegethat the effort is worth it.

The proof is based on two facts. First, we write théh power of the exact twist map as
the integrable twist mapr,,y1) = (x + vy, y) plus an exponentially small remainder on the
distance to the RIC. See Theorem 2. The size of the remaisdeduced by performing a
finite sequence of changes of variables, but the number &f si@nges increases when we
approach to the resonant RIC. This is a classical Neistiteslargument [29]. Second, we
apply the MacKay-Meiss-Percival action principle [23]which the difference of actions of
(p, q)-periodic orbits is interpreted as an area on the phase space

The structure of the paper is the following. Section 2 is deddo state our results in
the general context of analytic exact twist maps. In Sestband 4, we present the different
billiard maps and show how the results in Section 2 apply.ti@es 5 and 6 contain the
technical proofs.

2. Main theorems

2.1. Dynamics close to an analytic resonant RIC

We consider analytic maps defined on a neighbourhood (inytlreder) of a resonant RIC.
We also assume that these maps have the intersection yaideast in one side of the RIC.
Our goal is to show that these maps are exponentially close itategrable one in the distance
to the resonant RIC. No exactness or area-preserving ecomdtrequired.

LetT = R/Z. Let I be an interval of the real line.

Definition 1. A continuous map : T x I — T x R has thentersection propertif the image
of any closed homotopically non trivial loop of the cylindex I intersects the loop.

The intersection property is preserved under global creongeariables.

Definition 2. Letg : T x I — T x R be a continuous map. itational invariant curve (RIC)
of g is a closed loog” C T x I homotopically non trivial such that(C) = C. Letm and
n be two relatively prime integers such that> 1. We say that’ is (m, n)-resonanwhen
G"(s,r) = (s +m,r) forall (s,r) € C, whereG(s,r) is alift of g.

We want to study the dynamics of an analytic mawith the intersection property in
a neighbourhood of afin, n)-resonant RIGC. First, we note that all points on the RIC
remain fixed under the power mdgp= ¢". Second, we recall a classical lemma that appears
in several papers about billiards [21, 37]. We present thefdor completeness.
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Lemma 1 (cf. [37]). Let3 > 0. Letf : T x (—=5,5) = T xR, f(s,r) = (s1,7r1), be areal
analytic map with the intersection property of the form

s1 =5+ p(s)r +O(r?), r=7r+P(s)r* + 0(r?), (6)

for some real analyti¢-periodic functionsp(s) and«(s), andg(s) has no zeros. Then there
exist some new analytic coordinates y) in which f has the form(zy, ;) = f(z,y), with

n=r+y+0@W?), wn=y+0) (7)

Besides, there exist some analyticity strip width> 0 and some analyticity radius, > 0
such thatf is real analytic onT x (—b., b.) and can be analytically extended to the domain

Da,p, = {(z,y) € (C/Z) x C: [Sz| <a., |yl <b.}. (8)

The same result holds whegn: T x [0,5) — T x Rorwhenf : T x (—3,0] - T x Ris a
real analytic map with the intersection property of the fqiGh

Proof. The intersection property implies that the quotieit) /o (s) has zero average. Let us
prove this claim. Seti = fol (1(s)/¢(s))ds. We consider the coordinatés, y) defined by

x =al(s), y = b(s)r, 9
where the real analytic function$s) andb(s) have the form
al(s) = 8@ s) =rvex [— S(@_ ) ]
0= [ 2t v e |- [ (SR -u)a (10)

for some constant # 0. The functionb(s) is 1-periodic and has no zeros. The constaig
determined in such a way thats + 1) = a(s) + 1, so the new angular coordinateés defined
modulus onex € T. A straightforward computation shows that

r=r4+y+0(y%),  yi=y+pp(s)y?/b(s) + O(y).

If © # 0, then the magzx,y) — (x1,y;) does not have the intersection property. Hence,

© = 0 and the mapf has the form (7) in the analytic variablés, y). These coordinates

(x,y) cover an open complex neighbourhood{gf= 0}. In particular,f can be analytically

extended to the complex domaid,, ;. for somea,, b, > 0. O
The map (7) can be viewed as a perturbation of the integralé map

T =T+, Y1 =1y. (11)

We want to reduce the size of the nonintegrable tefiig) andO(y?) as much as possible.
We can reduce them through normal form steps up to any desnd&f; see Lemma 10.
Thus, the nonintegrable part of the dynamics is beyond dkoiny; that is, in the distance
to C. A general principle in conservative dynamical systemsestéhat beyond all order
phenomena are often exponentially small in the analytiegmty. Our goal is to write the
map as an exponentially small perturbationyinf the integrable twist map (11). The final
result is stated in the following theorem. /Afis a real-valued smooth functiof;» denotes
the derivative with respect to thieh variable.
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Theorem 2. Leta,,b. > 0. Letf : T x (—=b,,b.) = T xR, (z1,y1) = f(x,y), be areal

analytic map of the form (7) with the intersection propenty®x [0,b,) or T x (—b,, 0] that

can be analytically extended to the complex domain (8)nLéet 2 be an arbitrary order. Let
a € (0,a,). There exist constants > 0 andd, € (0, b,) such that, ifb € (0,b,), then there
exists an analytic change of variablés y) = ®(£, n) such that:

(i) Itis uniformly (with respect t@) close to the identity ofi x (—b, b). That s,
r=6+0(m), y=n+0@n*),  detDO(&n)]=1+0(n),

forall (¢,n) € T x (—b,b), where theD(n) andO(n?) terms are uniform irb; and

(i) The transformed map¢é,n) — (&1, m1) is real analytic on the cylindefl x (—b,b).
Besides, it has the form

gl - §+77+77mgl(§777)7 m = 77+77m+192(§a77)a (12)
where|g; (&, 1)| < Ke /" and|9;g;(¢,n)| < Kb~*forall (¢,7) € T x (=b,b).

The proof can be found in Section 5.

Remarkl. We require the intersection property on one side of the l@stdRICC' = T x {0}
only. This is useful to study the billiard (and dual billidmaps considered later on, because
the boundaries of the natural phase spaces of these mape vawed as resonant RICs.

Consider a perturbed Hamiltonian system which is close tintagrable system. It
is known that, under the appropriate nondegeneracy conditithe measure of the set of
tori which decompose under the perturbation can be bounded &bove by a quantity of
order /¢, ¢ being the perturbation parameter [29, 32]. Neishtadt [29) @onsidered a
context where the perturbation becomes exponentiallylsmabme parameter and hence
the measure of the complementary set which is cut out frons@lspace by the invariant
tori is of ordere~/¢, ¢ being a positive constant. This argument could be applieouto
context. First, any neighbourhood of an analytic RIC of fiygmnts of an analytic map
contains infinitely many RICs. Second, the area of the comefgary of the RICs in any of
such neighbourhoods is exponentially small in the size @higighbourhood. Third, the gaps
between the RICs are exponentially small in their distaotkée RIC of fixed points. The first
result follows from the classical Moser twist theorem [3#he others follow from the ideas
explained above.

2.2. Difference of periodic actions

In this subsection we consider real analytic exact twist srdgfined on open cylinders that
can be extended as rigid rotations on the boundaries of tihedey. This has to do with the
fact that we look for a global result. See Remark 2 below.

Let D C T x R be the open cylinder enclosed between two homotopicallytrieial
loops,C_ andC',. We assume thaf’_ is strictly belowC,. Letw = —d\ be an exact
symplectic form onD. The symplectic formv may be degenerate or not defined on the
boundarie®D = C_ U C,.
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Definition 3. A smooth diffeomorphism: D — D is anexact twist mapvhen it preserves
the exact symplectic form = —d\, has zero flux, and satisfies the classitveikt condition
Oss1(s,7) > 0, whereG(s,r) = (s1,ry) is alift of g.

Henceforth, the exact symplectic foun= —dA\ and the liftG remain fixed. We stress
that, ifg : D — D is a diffeomorphism preserving andg has a RICC, then both the zero
flux condition and the intersection property are automéicatisfied.

If an exact twist map; : D — D can be continuously extended as rigid rotations of
angleso_ ando, to the boundarie§'_ andC',, thenp_ < p, (due to the twist condition) and
there exists a functioh : {(s,s1) € R*: o_ < s; — s < 0.} — R, determined modulo an
additive constant, such that

G*A— X =dh.

The functionh is called theLagrangianor generating functiomf g.

Let p andg be two relatively prime integers such that < p/q < o, andg > 1. A
point (s,7) € R x I'is (p, q)-periodicwhenG(s,r) = (s + p,r). The corresponding point
(s,r) € T x I is a periodic point of period by g that is translateg units in the base by the
lift. A (p, q)-periodic orbit isBirkhoff when it is ordered around the cylinder in the same way
that the orbits of the rigid rotation of angie¢q. See [18] for details. The Poincaré-Birkhoff
Theorem states that there exist at least two different Biifkfp, ¢)-periodic orbits [18, 27].

Let O = {(sk, k) }rez b€ a(p, ¢)-periodic orbit. Its(p, ¢)-periodic actionis

WPD[0] = h(sg, 1) + h(s1,82) + - - - + h(s4_1, 50 + D).
Our goal is to establish an exponentially small bound fomtbie-negative quantity

AP — sup }W(pq [O] W ®.a) [OH ’
0,0e0y"

where(’)gp’” denotes the set of all Birkhofp, ¢)-periodic orbits of the map : D — D. The
difference of(p, q)-periodic actions can be interpreted asdharea of certain domains.

Let us explain it.

Let O = {(sk,7%) thez andO = {(5, %) }rez b€ two (p, ¢)-periodic orbits. We can
assume, without loss of generality, tiiak s, — so < 1. Let L, be a curve fronsg, ro) to
(50, 7o) contained iR x I. SetL;, = G*(L,). The curved., andL, have the same endpoints
in T x I. Let us assume that these two curves have no topologicaingen the cylinder
T x I and letB C T x I be the domain enclosed between them.

Observe tha;[Lk+1 A= [ A= [, (GA=A) = [, dh = h(Sk, k1) — h(sk, Sk+1)-
Hence 31y (A(8k, Sk1) = Alsks seen) = [ A= [, A = [, A = + [;w, where the
sign + depends on the orientation of the closed pgthl,) — Lo, but we do not need it,
because we take absolute values in both sides of the preva@i®n:

|W®D[0] — WPD[0]| = / w =: Area,[B]. (13)

These arguments go back to tMacKay-Meiss-Percival action principlR3, 27]. If the
curves L, and g%(L,) have some topological crossing, then the domB&irhas several
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connected components, in which cage®<)[0] — W»9[0]| < [, w =: Area, [B], because
the sign in front of the integral of the area fotndepends on the connected component.
If the analytic exact twist map has a(m, n)-resonant RIC, then

A = 0,

Indeed, we can take a segment of the RIC as the clgugsed in the previous construction
in such a way thay"(Ly) = Ly andArea,[B] = 0. It turns out that the differences @#, q)-
periodic actions ofy are exponentially small whep/q is “sufficiently close” tom/n. The
meaning of “sufficiently close” is clarified in the followirtheorem. See also Remark 3.

Theorem 3. Letg : D — D be an analytic exact twist map that can be continuously eleen
as rigid rotations of angleg_ and o, to the boundarie¢’_ and(C',, respectively. Letn and

n be two relatively prime integers such that> 1. Leta,, b, > 0, « € (0,a,), andL > 1. If

o— = m/n, g can be analytically extended t0_, and there exist some analytic coordinates
(x,y) such thatC_ = {y = 0} and the power mag = ¢" has the form (7) and can be
analytically extended to the complex domain (8), then tegistsK > 0 such that

2

APD < [ exp (—77””-’ ) , (14)
[np — mq|

for all relatively prime integerg andq with 1 < np — mg < L andg > 1. The same upper

bound holds interchanging the roles@f andC'_, but in this casd < mq —np < L.

The proof has been placed at Section 6.

Remark 2. This theorem requires some global hypotheses because, foytide, the
computation ofA®% involvesall (p, q)-periodic orbits of the mag : D — D and not
only the ones close to the resonant boundary. The global tergition and the continuous
extension as a rigid rotation to the other boundary implyafidp, ¢)-periodic orbits are close
to the resonant boundary. Clearly, there exists a localvef the exponentially small upper
bound (14) when the analytic exact twist maps defined on a small neighbourhood of the
resonant RIC.

Remarlk3. Condition|np — mgq| < L implies thatjp/q — m/n| = O(1/q) asq — +oc.

Remark4. In many applicationsg_ = 0, soC_ is a RIC of fixed points. Then Theorem 3
implies thatA®% is exponentially small in the periagwhenp remains uniformly bounded.
To be precise, itv € (0,a,) andL > 1, there existd< > 0 such that

A@9) < K e~ 2maq/p

for all relatively prime integerp andq with ¢ > 1 and1 < p < L.

3. On the length spectrum of analytic convex domains

3.1. Convex billiards

We recall some well-known results about billiards that caridund in [20, 36, 18].
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Let " be a closed strictly convex curve in the Euclidean pl&AeWe assume, without
loss of generality, thal' has length one. Let € T be an arc-length parameter dn Let
f:Tx(0,7) =T x (0,7), (s1,71) = f(s,7), be the map that models the billiard dynamics
insideI" using theBirkhoff coordinategs, r), wheres € T determines the impact point on
the curve, and € (0, 7) denotes the impact angle.

The mapf preserves the exact symplectic foxm= sin r ds Adr and has the intersection
property. Indeedf : T x (0,7) — T x (0, 7) is an exact twist map with boundary rotation
numberso_ = 0 ando, = 1. Besides, its Lagrangian is the distance between consecuti
impact points. Finallyf is analytic wher" is analytic.

Any (p, q)-periodic orbit on the billiard map forms a closed inscrilglygon withgq
sides that makesg turns insidel’. Since the Lagrangian of the billiard map is the distance
between consecutive impact points, the periodic action pérodic orbit is just the total
length of the corresponding polygon. Therefore, the suprenaction difference among
(p, q)-periodic billiard orbits is the supremum length differenamong inscribed billiard

(p, q)-polygons.

3.2. Study close to the boundary of the billiard table

We note that- — 0" when a billiard trajectory approach&s Thus, in order to study the
billiard dynamics close td', we must study the billiard map : T x (0,7) — T x (0,7) in

a neighbourhood of the lower bounddfyx {0}. We want to apply Theorem 3 to this lower
boundary, so we need to check tifatan be analytically extended © x [0, ). We prove a
stronger result in the following proposition. To be precibe billiard map can be considered
as a real analytic diffeomorphism of a torus by identifyihg upper boundar¥ x {r} and
the lower boundar{l x {0} and considering the impact angles on the projective line.

Proposition 4. LetI" be an analytic strictly convex curve in the Euclidean plahet p(s)
be the radius of curvature df as a function of the arc-length parameterThe billiard map
f:Tx(0,7) = T x (0, 7) associated td" satisfies the following properties:

() 1t extends analytically ta' x R;

(i) Its analytic extension has the reversibilities and frexiodicity

f=RofloR, f=Tof'oT, Pof=foP,
whereR(s,r) = (s,—r), T(s,r) = (s,m —r),and P(s,r) = (s, + 7);
(iii) It can be considered as a real analytic diffeomorphisfithe torusT x (R/7xZ); and
(iv) The first terms of its Taylor expansion for small impaatjies are

s1=s+2p(s)r +4p(s)p(s)r?/3 + O(r7),
ri=r—=2p'(s)r?/3+ (4(p'(5))?/9 = 2p(5)p"(5)/3) 1° + O(1%).

Proof. Letm : T — T,k : T — (0,+00), andn : T — R? be an arc-length parametrization,
the curvature, and a unit normal vector of the analytic #yriconvex curve linked by the



On the length and area spectrum of analytic convex domains 11

relationm”(s) = r(s)n(s). In what follows, we consider these functions as real aialyt
1-periodic functions defined on the universal coReof T. We also consider the set

U={(s,51) ER*:|s; —s| <1} =U_UAUU,,
whereU_ = {(s,s1) e R? : s — 1 < sy < s}, Uy = {(5,51) € R? : s < 81 < s+ 1},
and A is the diagonaK(s,s;) € R? : s; = s}. Next, we write both impact angles as
functions of consecutive impact points. To be precise,ettexist two analytic functions
7,7 : Uy — (0, 7) such that

(s,s1) € Uy andf(s,r) = (s1,r1) <=1 =T7(s,s1) andry = 7(s, s1).
Let us study what happens when — s™. We note that = (s, s;) is the angle between
m/(s) andm(s;) — m(s). Hence,
det (m'(s),m(s1) —m(s)) fol det (m/(s),m'(s +t(sy — s)))dt

(m'(s), m(s1) —m(s)) fol (m/(s),m/(s +t(s1 —s)))dt

so the functiorr(s, s;) can be analytically extended to the diagofal~(s, s) = 0, and

tanr(s, s1) = ) (15)

OoT (8, 5) = 811i_1>181+ Oa7 (s, 81) = slh—IEsl+ cos” 7(s, 1) 0y tan 7(s, s1) = k(s)/2,

for all s € R. The functionr (s, s;) can also be extended analytically foby using an

analogous argument. Sinégr(s,s) = k(s)/2 > 0 for all s € R, there exists a function
51(s,r) analytic onR x {0} such that(s, 5,(s,r)) = rands;(s,0) = s. Thus, we can write
the billiard map asf(s,r) = (s1,71) = (S1(s,7),71(s, 51(s,7))), which proves thaf can be

analytically extended to a complex neighbourhoo@®of {0}.

Let us describe the meaning of this extension for small megahpact angles. To begin
with, we model the billiard dynamics as a map that acts on@wunts/e impact points. That
is, we consider the new billiard map : U, — U, such thatf(s_1,s) = (s,s;). The
previous arguments show thAtan be analytically extended to a complex neighbourhood of
A. ltis geometrically clear that relatiofys;, s) = (s, s_;) holds for this extension. That is,
f=Rof'oR, whereR: U — U is the reversoR(s, s;) = (s, s).

Next, we come back to the Birkhoff coordinateésr). Let R(s,r) = (s,—r). Since
F1(s1,s) = —7(s, ), the reverso? becomesk = R o f~! in the Birkhoff coordinates.
Hence, relationg = Ro f*o Randf = Ro f~! o R hold, at least in a neighbourhood
of R x {0}. Thus, we can analytically extenfdto R x (—m, ) by using the reversak. We
note thatP = T o R, whereT'(s,r) = (s, m — r) is a well-known reversor of . This implies
thatP o f = f o P, so we can analytically extendto the whole spac® x R by periodicity.
Finally, we recall that is an angular variable, so the billiard mgps analytic in the infinite
cylinderT x R.

This ends the proof of the first two items. The third item iS\aadf consequence of them.
The Taylor expansion given in the last item was obtained utlan [21]. O

From the Taylor expansion given in the previous proposjti@zutkin deduced that the
billiard map takes the form

rn=r+y+0@u%, w=y+0@"
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in the analytid_azutkin coordinatesz, y) defined by

s 1
xr = k;/ p 23(t)dt, y = 4kp'/3(s)sin(r/2), k7!= / p 23(t)dt.
0 0

The constank is determined in such a way that the new angular coordinatedefined
modulus one. Lazutkin’s results are more refined than the anéemma 1, he wrote the
billiard map as a smaller perturbation of the integrablestwnap (z1,y1) = (= + y,v),
but we do not need it. Our coordinates (9)—(10) and the Lazwd&ordinates are directly
related. Namelyy(s) = 2p(s) andi(s) = —2p/(s)/3 imply thata(s) = & [ p~2/3(t)dt,
b(s) = vp'/3(s), andv = 2k.

Let D =T x (0,7), C_ =T x {0}, andC, = T x {n}. Setm = 0 andn = 1. The
billiard mapf : D — D satisfies the hypotheses required in Theorem 3. Only onethgpis
can rise doubts at this point. Namely, the existence of samab/tic coordinatesx, y) such
thatC_ = {y = 0} and f has the form (7) and can be analytically extended to the cexnpl
domain (8) for some.,, b, > 0. This existence follows directly from Lemma 1 singdas
the form (6) withp(s) = 2p(s) > 0 andy(s) = —2p'(s)/3. See Proposition 4. Therefore, we
get the exponentially small upper bound of the quantifiés) defined in the introduction.

Theorem 5. LetI" be an analytic strictly convex curve in the Euclidean plaoeta, > 0 be
the analyticity strip width of the lower boundafy . Leta € (0,a,) and L > 1. There exists
a constantk’ > 0 such that

LD < [e2maalp,
for all relatively prime integer® andq withg > 2 and0 < p < L.

The same exponentially small upper bound holds for anajgoxlesically strictly convex
curves on surfaces of constant curvature, where the hillisajectories are just broken
geodesics. Billiard maps on the Klein model of the hyperbplaneH? and on the positive
hemispheré? have been studied, for instance, in [7], where it is shown ey are exact
twist maps with the same boundary rotation numbers as in ticidean case. Therefore, by
local isometry arguments, we can write a version of Theoreon @ny surface of constant
curvature.

3.3. Billiard tables of constant width

Definition 4. A smooth closed convex curve isafnstant widthf and only if it has a chord
in any direction perpendicular to the curve at both ends.

Billiards inside convex curves of constant width have a mogperty [19, 14]. Let us
explain it.

The billiard map associated to a smooth convex curve of ennstidth has the horizontal
line T x {w/2} as a(1, 2)-resonant RIC. Any trajectory belonging to that RIC is ogbnal
to the curve at its two endpoints. Due to the variational falation, all the(1, 2)-periodic
orbits are extrema of th@, 2)-periodic action and, thus, &ll, 2)-periodic trajectories have
the same length, which is the reason we refer to them as cunsitéth curves.
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Another characterization of constant width curves is tHeWing. We reparametrize
the curve by using the angle € (0, 27) between the tangent vector at a point in the curve
and some fixed line. Lei(y) be the radius of curvature at this point. The curve has canhsta
width if and only if the Fourier series gf(y) contains no other even coefficients than the
constant term. Thus, the space of analytic constant widthesthas infinite dimension and
codimension.

Next, we apply Theorem 3 twice in order to get the expondgtsahall upper bound of
L™ in both sides of th¢l, 2)-resonant RICT x {/2}. Namely, we apply it to the cylinders
T x (r/2,7) andT x (0,7/2). SinceT x {r/2}is a(1,2)-resonant RIC of the biliard map
g: T x (0,7) = T x (0, ), the square billiard map = ¢* has the form

51 =5+ o(s)v + O(v?), v = v+ Y(s)v* + O(v?),

for some real analytid-periodic functionsy(s) and(s), wherev = r — /2 measures
the distance to the resonant RIC. The functigi) is positive becausg satisfies the twist
condition on the whole phase spdtex (0, 7). Therefore, we can apply Lemma 1, so all
hypotheses of Theorem 3 are satisfied.

Theorem 6. Letg : T x (0, 7) — T x (0, 7) be the billiard map of an analytic strictly convex
curve of constant width. Let, > 0 be the analyticity strip width of thél, 2)-resonant RIC
of g. Leta € (0,a,) andL > 1. There exists a constaif > 0 such that

L0 < Kexp (‘ i 1/2|) ’

for all relatively prime integer® andq such thatl < |2p — ¢| < L andq > 3.

One could try to generalize constant width billiards, wHérse{r/2} is a(1, 2)-resonant
RIC, to constant angle tablesvhereT x {r,} is assumed to be én,n)-resonant RIC.
However, the only table such th@tx {r,} is a(m,n)-resonant RIC, witi{m,n) # (1, 2),
is the circle. See [14, 8]. By the way, Theorem 3 applies te tlaise but, since the circular
billiard is integrable £(™™ = 0, for all (m, n). In fact, the circular billiard map is globally
conjugated to the integrable twist map (11).

There are more billiard tables with resonant RICs, but tRé@s are not horizontal. For
instance, the elliptic table has all possibie, n)-resonant RICs, but th@, 2)-resonant one.
Hence, in this case; (™™ = (. Baryshnikov and Zharnitsky [3] proved that an ellipse can b
infinitesimally perturbed so that any chosen resonant RICpersist. Innami [16] found a
condition on the billiard table that guarantees the exisaia(1, 3)-resonant RIC. However,
Theorem 3 can not be applied in such cases, because both tyghBikov-Zharnitsky and
the Innami constructions are done in the smooth categomgtevive can only claim that®
is beyond all order in the difference between rotation nuisibe
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f(z)

A an

Figure 1. The envelope coordinatés, r) and the dual billiard mag : U — U.

4. On the area spectrum of analytic convex domains

4.1. Dual billiards

We recall some well-known facts about dual billiards that ba found in [5, 15, 36].

LetT be a strictly convex closed curve in the Euclidean plahelet U be the unbounded
component ofR? \ T'. The dual billiard mapf : U — U is defined as follows;f(z) is the
reflection ofz in the tangency point of the oriented tangent lind'tthroughz. This map is
area-preserving. Next, we introduce t#evelope coordinategy,r) € T, x (0,4o00) of a
pointz € U. In this sectionT, = R/2xZ. We recall thaifl = R/Z.

Given a pointz € U, leta € T, be the angle made by the positive tangent lin€ io
the direction ofz with a fixed direction of the plane, and lete I be the distance along this
line fromI to z. See Figure 1.

The dual billiard map preserves the exact symplectic farm r da A dr and has the
intersection property. Indeed,: T, x (0, +00) — T, x (0, +00), (aq,71) = f(c,7), IS @n
exact twist map with boundary rotation numbers= 0 andg, = =. Its Lagrangian is the
area enclosed by and the tangent lines through the pointslowith coordinatesy anda; .

Any (p, q)-periodic orbit on the dual billiard map forms a closed cimacribed polygon
with ¢ sides that makeg turns outsidd’. Since the Lagrangian of the dual billiard map is
the above-mentioned area, the periodic action of a periodid is just the area enclosed
between the corresponding polygon andtaking into account some multiplicities when
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p > 2. Therefore, the supremum action difference amgng@)-periodic dual billiard orbits
is the supremum area difference among circumscribed diliar8i(p, ¢)-polygons.

4.2. Study close to the curve

We note that- — 0" when the point € U approaches to the cunte Therefore, in order
to study the dual billiard dynamics close g we must study the dual billiard mapin a
neighbourhood of the lower boundaty = T, x {0} of T, x (0, +o0).

Let us check that the dual billiard mgp: T, x (0,4+00) — T, x (0,+oc0) satisfies
the hypotheses required in Theorem 3. Only two of these Ingsais remain to be checked.
The first one is thaf can be analytically extended to the lower boundary= T, x {0}.
The second one is that there exist some analytic coordifate$ such that”_ = {y = 0}
and f has the form (7) and can be analytically extended to the cexmgidmain (8) for some
a., b, > 0. This second part will follow directly from Lemma 1 once weeck that

ap = a+ 2k(a)r + O(r?), r =1 — 2K (a)r?/3 + O(r?), (16)

wherer () is the curvature of' as a function of the envelope parameterWe prove these
results (and a stronger extension one) in the following psajpn.

Proposition 7. LetI" be an analytic strictly convex curve in the Euclidean plamae dual
billiard map f : T, x (0,+00) — T, x (0,400) associated td" satisfies the following
properties:

(i) It extends analytically ta@, x R;
(ii) Its analytic extension has the reversibilify= Ro f~1 o R, with R(a, 1) = (a, —r); and
(iii) It has the form (16) for small distances

Proof. Following the proof of Proposition 4, we consider the cooatle« in the universal
coverR, we write both distances as functions of consecutive tangeimts: » = 7(a, aq)
andr; = 7(«a, aq), and then we repeat the steps of the previous proof. Thererdyehree
remarkable differences between the two proofs.

First, U, = {(o, 1) € R? : @ < oy < a + 7} is the open set where we directly know
that the functions(«, o) andr;(a, ;) are analytic. We note that tangent lines through
points with coordinates anda + 7 are parallel, sdim,, _, (ax)- 7(o, a1) = +o0.

Second, to study what happens whan— o™, let p(«) be the radius of curvature f
in the envelope parameterand sety; = o + 9. From Boyland [5], we know that

f:‘l sin(v —a)p(v)dv  § /1 sin(6t)p(a + 6t)dt,

sin(a; — a) ~ sind
so the function®(a, ;) can be analytically extended th = {(a, ;) € R? : a; = a},
7(a,a) = 0, andody7(ar, ) = p() /2 > 0 for all o € R.
Third, the dual billiard map has no periodicity in the cookater, which is geometrically
obvious since- is no longer an angle, but a distance, in dual billiards.

(o, o) =
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The rest of the proof of the analyticity and reversibilityaempletely analogous. We
omit the detalils.

Finally, the Taylor expansion (16) of the dual billiard mapwandr = 0 was obtained by
Tabachnikov in [37]. To be precise, Tabachnikov wrote tlagldr expansion in coordinates
(s,r), wheres is an arc-length parameter, but his result can be easilytedap O

From the Taylor expansion given in the previous proposjti@bachnikov deduced that
the billiard map takes the form (7) in the analyTimbachnikov coordinate:, y) defined by

a 27
T = k:/ k23 (v)dw, y = 2ks3(a)r, kt= / k23 (v)dw.
0 0

The constank has been determined in such a way th#& defined modulus one: € T. The
coordinates (9)—(10) coincide with the Tabachnikov cawaites. Concretelyy(a) = 2x(«)
andy(a) = —2r/(a) /3 imply thata(a) = £ [;" k72/3(t)dt, b(a) = vp'/?(a), andv = 2k.

We get the following exponentially small upper bound of thiaatities. A9 defined in
the introduction by direct application of Proposition 7phma 1, and Theorem 3.

Theorem 8. LetI" be an analytic strictly convex curve in the Euclidean pldoeta, > 0 be
the analyticity strip width of the lower bounda€y . Leta € (0,a,) and L > 1. There exists
a constant’ > 0 such that

AP < [em2mea/p,
for all relatively prime integer® andq with¢ > 3 and0 < p < L.

Tabachnikov [38] studied the dual billiard map in the hymdidplaneH?, and extended
the asymptotic expansion (3) to that new setting. He alsoneld that there exists an
analogous formula for dual billiards on the unit sphEfe Therefore, by local isometry
arguments, we can write a version of Theorem 8 on any surfacenstant curvature.

4.3. Study far away from the curve

We note thatr — +oo when the point: € U moves away from the curvE. We use the
coordinateg o, v) to work at infinity, wherev = 1/r and («a,r) € T, x (0,+oc0) are the
coordinates introduced in Subsection 4.1. Tabachnikoy f[&&lized that the dual billiard
map at infinity can be seen as a map defined in a neighbourhaibe Of, 2)-resonant RIC
{v = 0}. To be precise, he saw that the dual billiard map can be acallyt extended to
v > 0, and its square has the form

ay = a+ pla)v + O(v?), v = v+ Y(a)v? + O(v?),

for some real analytit¢-periodic functionsp(a) andv(«), andy(«) is negative. This is all
we need to state the following theorem.
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Theorem 9. LetI" be an analytic strictly convex curve in the Euclidean pldoeta, > 0 be
the analyticity strip width of thel, 2)-resonant RIC{v = 0}. Leta € (0,a,) and L > 1.
There exists a constaif > 0 such that
APD < [ exp (_L) ’
Ip/a—1/2|
for all relatively prime integer® andq such thatl < |2p — ¢| < L andq > 3.

5. Proof of Theorem 2

5.1. Spaces, norms, and projections

Let X, ;, witha > 0 andb > 0, be the space of all analytic functiopsiefined on the open set
Dap =A{(z,y) € (C/Z) x C: |Sz| < a, |y| < b}
with bounded Fourier norm

lgllas =D gelse>™,

kEZ

whereg,(y) denotes thé-th Fourier coefficient of thé-periodic functiorny(-, y) and

|9kls = sup {|gx(y)] - y € By}
denotes its sup-norm on the complex open Ball= {y € C : |y| < b}. Let

|g|a,b = Sup{|g($7y)| : (xvy) € Da,b}

be the sup-norm oW, ;.
Let X, ;.. be the space of all vectorial functiots: D, ;, — C? of the form

G(z,y) = W g1 (z,y), " g2(2,y))

such thatg;, 9o € A,,. The spaceX,;., is a Banach space with the Fourier norm
1Glapm = max {[|1llas |92]las} - The sup-norm - o4, on X, ., is defined analogously.
Let g5(y) = fol g2(z,y)dx be the average of,(r,y). Let Xy, = X, © X7, be
the direct decomposition wher&;,  is the vectorial subspace of the elements of the form
G*(z,y) = (0,y™g3(y)), whereast?, . is the one of the elements wiffj(y) = 0. Let

a,bym
™ Xopm — Xy, andn® o Xy, — X2, . be the associated projections. Thus, any

a,b,m

G € X,m can be decomposed &5= G* + G*, where
G =7"(G) = (0,9 g5(y)) € Xy

bam G*=7(G) e Xy,
Obviously, | G*[lusm < [1G]lasm ANANIG* [apm < G llabm

We will always denote the scalar functions 4j,;, with lower-case letters, and the
vectorial functions inY,, ; ,, with upper-case letters. Asterisk and bullet superschippper-
case letters stand for the'-projections andr®-projections of vectorial functions &, .,
respectively. Asterisk superscripts in lower-case Isttemote averages of scalar functions in

X.». We will always write the couple of scalar functions asstazisto any given vectorial
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function of X, ; ,,, with the corresponding lower-case letter and the subscfipt 1,2. Hat
symbols denote Fourier coefficients.

5.2. The averaging and the iterative lemmas

Henceforth, letA(z,y) = (z + y,y) be the integrable twist map introduced in (11). Let
F = F, be a map satisfying the properties listed in Lemma 1Fsc= A + G, for some
Gy € Xoyp,2, Whereas = a, is the analyticity strip width in the angular variable and

by = b, is the analyticity radius iny. Hence,F; is a perturbation ofdA of order two. The
following lemma allows us to increase that order as much asave by simply losing as little
analyticity strip width as we want. It is based on classie@raging methods. In particular,
we see thaf' is a perturbation beyond all order df

Lemma 10(Averaging Lemma)Let F, = A+G,, withG,y € &L, 5, 2 andas > 0 andb, > 0,
be a real analytic map with the intersection property on thncler T x (—bs, by). Letm > 3
be an integer. Let,, be any analyticity strip width such thaf, € (0, a»).

There exist an analyticity radius,, € (0,b2) and a change of variables of the form
®,, =1+, forsomel,, € X, .1 such that the transformed mdf, = @,,' o F,0®,, is
real analytic, has the intersection property on the cylindex (—b,,, b,,), and has the form
F,, = A+ G, forsomeG,, € X, v,..m-

Besides, the change of variabkeg, is close to the identity oft x (—b,,,b,,). Thatis,

P, (z,y) = (x4 O(y),y + O(y?)) , det[®,,(z,y)] =1+ O(y), (A7)
uniformly for all (z,y) € T X (=by,, by )-

Proof. The changeb,, is the composition ofn — 2 changes of the form
O =1+, U; € Xy i1, 2<l<m,

whereq; = as — (I —2)¢, € = (ag — a,,) /(M —2), (b)2<1<m 1S @ poSitive decreasing sequence,
and¥, is constructed as follows to increase the order of the geation from/ to ! + 1.

Let us suppose that we have a real analytic map with the edBon property on
T x (—b;, b) of the formF; = A + G|, for someG, € &, ;,; With a;, b, > 0 andl > 2.

We begin with a formal computation. We write

Fi(z,y) = (;1: +y+ ylhl(a:) + O(yl+1),y 1 yl+1h2(3:) I O(yl+2)) 7

where the functiong,(xz) andhy(x) are 1-periodic and analytic on the open complex strip
{r € C/Z : |Szx| < a;}. We will see, by using aa posteriorireasoning, that the intersection
property implies that,(z) has zero average; that fs, = fol ho(z)dz = 0. Nevertheless, we
can not prove it yet. Thus, we will keep an eye/gnn what follows.

If we take the change of variables

Oz, y) = (z+y' (), y + y've(x)) (18)
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for some functions);(z) and ¢, (z), then, after a straightforward computation, the map
Fi.1 = (®,) ' o F, o &, has the form

Fi(z,y) = (z+y+y'ki(z) + O ™),y + ¢ ka(z) + O ™))
with k; = v + hy — ] andky = hy — }. Therefore, we take

Yo(z) = / C(hals) — B)ds — B, anla) = / " (dhals) + I (s))ds,

so thatk; (z) = 0 andky(xz) = hi. These functionsg(x) andw; (x) are 1-periodic, because
ho(z) — h% andiye(x) 4+ hy(z) have zero average. Besides,(z) andi,(x) are analytic in
the open complex stripz € C/Z : |Sz| < a;}. Indeed®; = 1+ T, with U, € X, 5,11

Next, we control the domain of definition of the méap ;. The inverse change is

(@) M@, y) = (z =y (@) + O, y — ylhala) + O(yH)) .

Thus, the map$,, F}, and(®;)~" have the forn{z,y) — (z+ O(y), y + O(y?)), sincel > 2.
Consequently, it ; < b;/2 is small enough, then

P, Fy (@)
— Da1726/374bl+1/3 _) Dal76/3,5bl+1/3 — Dal,Qle C Dal,b”

Now, let us check thati = 0. At

Daz+17bz+1

S0 F, 1 = (®;)7! o F} o @ is well-defined onD
this moment, we only know that

Fr(z,y) = (x + 44+ 0™,y + v hs + O(yl“)) ’

since the change of variables has not eliminated the avéragé/e recall thatf;; has the
intersection property on the cylind& x (—b,.1,b,41). This implies thath = 0. On the
contrary, the image of the lodp x {y,} does not intersect itself wheén< y, < 1.
Finally, properties (17) follow directly from the fact thate have performed a finite
number of changes, all of them satisfying these same piiepert 0J
Next, the following theorem provides the exponentially Bimaund for ther*-projection
of the residue provided an initial order big enough. It is the main tool to prove Theorem 2.

ajy1,b141°

Theorem 11.Letm > 6 be an integerg > 0, d > 0, andr € (0,1). There exist constants
b=b(m,a,d,r) > 0andc; = ¢;(r) >0, j = 1,2, 3, such that, if
F=A+G, Ge€Xppm & =[m"(Glapm 4 =7(G)lapm: (19
and
0<a<a, 0<b<byr, d + (14 ¢p)d* < d,
then there exists a change of variabtes= I + W satisfying the following properties:
(i) ¥ea, with |
(i) The transformed mua@ =dloFodis real analytic, has the intersection property on
the cylinderT x (—b,b), and has the fornt" = A+ G, G € & ;

,b,m?

Je.
,lu),mfl d,lv),mfl S Cld ! and

”71"(6?) —QWT(E/—&)/I;J..

a,b,m < cze
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Theorem 11 is proved in Subsection 5.5.

In order to present the main ideas of the proof, let us try tmmetely get rid of the
remainder of the map of the forA = A + G, for someG € &, ,,,, with a change of
variables of the forn® = I + ¥, for someV € &, ; ,,,_1. Concretely, we look fof such that
A =®"1o Fo®,or equivalently, we look fo such that

VoA—AV =Go (I+ ).
It is not possible to solve this equation in general. Instgadconsider the linear equation
VoA— AV =(.
This vectorial equation reads as
{ Uiz +yy) — i@ y) =y (e, y) + 91(2,9)) |
Yoz +y,y) — o, y) = yga(z,y).
Therefore, we need to solve two linear equations of the form

Uz +y,y) = v(zy) =yg(z,y), (20)
whereg € X, is known. If the average af(z, y) is different from zeroy*(y) = go(y) # 0,
then this equation can not be solved. Besides, it is a stfaigbard computation to check
that, if go(y) = 0, the formal solution of this equation in the Fourier basis is

Oe) = s—in(y),  YE A0, (21)

 e2mkyi

whereas the zero-th coefficiezyﬂ@(y) can be chosen arbitrarily. From (21), it is clear that (20)
can not be solved unlegshas only a finite number of harmonics and zero average. For thi
reason, given a functiof(x, y) with zero average, we define ifs-cut off as

g (@ y) = D duly)e™ (22)
|k|<K
Let K be such thap2rky| < 27 for all |y| < b and|k| < K. Hence, we will takek’ = s/b
for some fixeds € (0, 1), and we will actually solve truncated linear equations effirm

O +y.y) —Y(xy) = yg~"(z,y). (23)

The Fourier norm is specially suited to analyze this kindgfaions; see Lemma 14.
Summarizing these ideas, we look for a change of variabld#sedbrm® = I+ V¥, where
U satisfies the truncated linear vectorial equation

ToA— AV = (G*)<K, (24)

where(G*)<¥ denotes thes-cut off of G* = 7*((G). The average of the first component of
(G*)<K may be non-zero. Equation (24) is studied in Lemma 15. Thisecto the identity
change of variable$ = I + ¥ does not completely eliminate the remainder. Howeveérjsf
small enough, it reduces the size of titeprojection of the remainder as the following lemma
shows.
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Lemma 12 (Iterative lemma) Letm > 6 be an integera > 0,d > 0, u > 0, andp € (0, 1).
There exist a constant> 0 such that if

F=A+G, GeXpm d=|7"(C)apm: d° =I7(G)|abm,
with
0<ac<a, 0 < b < min{b,a/6}, d*+d* <d,
then there exists a change of variabfes= [ + W satisfying the following properties:
(i) ¥ e &, ;.1 Is asolution of the truncated linear equation (24) such that
[Wlapm—1 < [¥]lapm—1 < Qd°,

whereQ) = Q(,/p) is defined in Lemma 15; and

(i) The transformed map’ = ® ' o F o ® is real analytic, has the intersection property on
the cylinderT x (—b,b), and has the fornf" = A + G, G € X,

I=(G)

,b,m?

<& 7O <

||a,5,m
whered = a — 6bandb = b — ub?.
Remarks. If @ = a — 6b, thene 2mrle=a)/b — o=12mp,

The proof of this lemma is found in Subsection 5.4. Some teeltities in the proof
require the use of the sup-norm, which forces us to deal wath the Fourier norm and the
sup-norm. The relations between them are stated in Lemma 13.

Finally, Theorem 11 is obtained by means of a finite sequehchanges of variables
like the ones described in the iterative lemma. We want téoperas many of such changes
as possible because each change reduces the sizerdfphejection of the remainder by the
factore~12™. Since the loss of analyticity in the angular variablélis= O(b), then we can
at most perform a numbe&d(1/b) of such changes. This idea goes back to Neishtadt [30].

The intersection property is used neither in the proof ofitbtive lemma nor in the
proof of Theorem 11, but will be essential to control the siteéhe 7*-projections of the
remainders in terms of the size of thef-projections later on.

5.3. Technical lemmas

Lemma 13. Let0 < a < min{a, 1/27},b > 0, andg € X, ;. Letg=X = g — g=F, with g=¥
the K -cut off ofg, defined in (22). Then:
@ 19" ap < llgllas
() 197" Na—ap < > gllaps
(i) [glas < llgllas, and
(V) l[glla—ap < O‘_1|g‘a,b-
If m € N, then these bounds also hold for any vectorial functiba X, ;, ,,,.
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Proof. First, the Fourier norm of<¥ is a partial sum of the Fourier norm gf Second,
197 lamap = DKz K |§1k|bezﬂ|k‘.(aw) = ef%KQZ\mzK |giclse®™ M < 25| g]|. Third,
9(z.9)| < Xpez o™ < Ppen [9xlse®™ M = |lgllap, for all (z,y) € Doy
Fourth, we recall that the Fourier coefficients of the analfgtnction g satisfy the inequality
|Gk]p < e2mIFla|g],, for all k € Z. Hence,

Hgllaap =D laxle® M < 20glo, Y e ™ < aglay,

kEZ k>0
where we have used thaf, e ™™ = (1 —e™)™" < e/t < w/tforallt c (0,1). The last
part follows from the definition of the normjs- ||, and| - |4.p.m- O

Lemma 14.1f s € (0,1), K = s/b, andg € A,, is a function with zero average, then
the truncated linear equation (23) has a unique solutiore X, ;, with zero average and
[¥]lap < wllglla. where

1

= — - max
2T |z|<2ns

- ' . (25)

w=w(s) e

Proof. The Fourier coefficients af must satisfy (21). We note that< oo for all s € (0, 1),
since the functiorr/(e* — 1) is analytic on the open balt| < 27. Moreover,

e27rkyi —1

|1/A}k|b < (max
<b

|y]

N W . N
) e < 2l < ol

forall 0 < |k| < K = s/b. Finally, we recall that)y(y) = 0. Then we obtain that
1llas = S ocpper [Pelbe?™¥e < w3, o 13kl = wllglap- O
Remark6. We will denote byy = G (¢<%) the linear operator that sends the independent
term ¢g<* of the truncated linear equation (23) to the solutiowith zero average. Note that
the solutiony) has no harmonics of order K.

Lemma 15.1f m > 1, s € (0,1), K = s/b, andG € X,,.,, then the truncated linear
equation (24) has a solutio#i € &, ; ,,,_1 such that

H\I[Ha,b,mfl S QHG.Ha,b,nw
whereG* = 7*(G), 2 = Q(s) = (w(s) + 1) max{1,w(s)}, andw(s) is defined in (25).

Proof. Let G = (y™g1,y™'g2) and ¥ = (y™ 141, y™,). Then the vectorial equation
VoA— AV = (G*)<K reads as

b +y,y) = i(e,y) =y (Yal@,y) + 075 (2,9))
Uo(x +y,y) — a(r,y) = y(g5" (2, y) — g5 ().
Let vy = Gr (95" — g3) — g andyy = Gk (s + g7™). These operations are well-defined
since bothy, — g5 andvy, + g, have zero average. As for the bounds,
[V2llap < wllg2 = g2llap + [l91llap < QUG lapm,
[1llap < @l + 97" lap
< wlte + gillap + wlgr™ = gillas
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<w?llg2 = g3llap + wllgillap < QUG lapim,
where we have used Lemma 14. O

Lemmal6.Letl,;n € N,0 < a < min{a/3,1/27},0 < f < b/2,¢1,c2 > 0,ande = ¢;+ca,
such that

btbe<a+B, — btle< g (26)

Let M = M(a,b, 3,c1,c2,1,n) = (1 +b"c) 61 (a7t + 0871 + 1+ 1). LetA € X,,,. Let
[Ty € Xoosap20 With [[Ujlla—2ap-26 < ¢;. LetL(z,y) = (z + ny,y) with || < 1.
Then,

() Ao(L+T1)—Ao(L+Ts) € Xy sapomnis

(i) [Ao(L+Ty) —Ao(L+T9)|a—2ap-28n+1 < M[A|gpi|T1 — T'2la—20,6-28,, @and
(i) |Ao(L+T1)—Ao(L+T9)|lasap20mr1 < Ma | AllapaIT1 = Talla20,6-25.n-

Proof. LetI' =T'y — I's. Then|I'|,—20—28.n < |T'||a—20p—25.» < cand
1
0

Let (w1, y) = (L + (D) (2,y) = (x +ny + ty"n(z,y),y + ty" 'y, y)), with t € [0,1]
fixed. We deduce from conditions (26) that, y) and(z,y;) belong toD,_, ;s for all
(2,y) € Dy—2ap—2p. Therefore(x,,y:) € D,—ap—p by convexity of the domain, and so, the
compositionA o (L + tI') is well-defined on the domaib?,_s,, »—25-

A simple computation shows that the prodibeh (z;, v;) - I'(z, y) is equal to

u T (006 (s, v (@, y) + (10201 (2, ) + 101 (20, 1)) 72(, )
yéynﬂ (yil?/taﬂSQ(fEt, yt)%(ff, ?/) + (%8252(%, yt) + (l + 1)52(%, yt)) 72(5157 ?/)) .

Let us bound the elements above. On the one handr,y)| < |Io—2ap-28m < €,
vl = |y + ty" T ya(z,y)] < (1+b0")|y|, and|y| < bforall (z,y) € Dy_20p-25. ON
the other handy;(zs, ys)| < |Al.»,; @and the Cauchy estimates imply that

1010 (4, ye)| < o A0, 1050 (1, ye)| < B A ps-
From the previous bounds and the definitions of both normsjedeice that

(DA o (L+1tI)) - Ta—2ap—28n+1 < M'[Alapa|Ta—20,-28,n
forallt € [0, 1], whereM’ = (1 + b"c)"™! (=t + b3~ + 1+ 1). Thus,

Ao (L+T1)—Ao(L+T9)|a2ap-28n+1 < MI[Alapill|a—20.0-25.n
||A o (L + Fl) - A o (L + F2)||a—3a,b—2ﬁ,n+l S a_lM,||A||a,b,l||F||a—2a,b—2ﬁ,n-

This proves the first item. The other items follow from the bas|| - |, 5,1 < 071« apns
and|| - [lapmst < U7 - |lapms, SinCeM = ML O
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Lemma 17. Letn € N, 0 < a < min{a/3,1/27},0 < 8 < b/2, andp > 0 such that
conditions (26) hold witle = 2p. Let® =1+ U, with ¥ € &, ,,, and ||¥||,5» < p. Then
Dy ) C Dyjapipforall 0 <a <aand0 < <b.

Let M, = M(«, b, 5, p, p,n,n), whereM is defined in Lemma 16. lf/,bp < 1, thend
is invertible and the inverse change* satisfies the following properties:

(i) @' =1+ T forsomeY € X, 904 25, SUchthai |, 205 26 < |¥]apns
(i) @ (Duy) C Dyyayrpforal 0 <a <a—2candd <V <b-—243,and
(i) 1T+ ¥llasap-25m41 < Moo T2

a,b,n*

Proof. Note that¥|, ;.,, < ||¥||as. < p- Conditions (26) imply that"p < o andb™™'p < 8.
Therefore,®(Dy ) C Dyiawip foral 0 < o’ < aand0 < ¥ < b. Analogously,
if T € Xa—Qa,b—Qﬁ,n and |T|a—2a,b—26,n < p, then (I + T)(Da/,b/) C Da’—l—a,b’—f—ﬁ for all
0<d <a—2a,0<b <b-—205.

We denote by5 the closed ball inY,_q, 23, Of radiusp in the sup-norm. Let us prove
that the functionalP? : B — B, P(T) = —¥ o (I+ T), is a well-defined contraction with
Lipschitz constant

Lip P < M,b|¥|qpn < Mybp < 1. (27)
First, we observe that
1P(0)|a—200-281 < |¥]apn < D, VY e B, (28)
soP(B) C B. Second, we bounB(Y) —P(Z) =V o (I+Z) — Vo (I+7) as follows:
[P(T) = P(E)a-2a-28:0 < OP(T) = P(E)|a-20-28n11
< M|V pn|ZE — Y]a—2a6-28n (29)
The first inequality is direct, and the second comes from Lai@ withA = ¥, I'; = =,

I'o =7,L =1,¢ = p, andl = n. This proves tha is a contraction with Lipschitz
constant (27). Thug? has a unique fixed poinf € B which satisfies that
I+P)o(I+T)=14+T4+TVo(I4+T)=1+T—-P(7) =1
on D, s,5-25. Therefore, the inverse map~! exists and equals + Y. Furthermore,
1T a—20.b-28.n < |V]as. fOllows from (28). Finally,
1T + ¥llasab2smi1 < @ T+ U)u 20p 28mt1
< 0471|7D(T) — P(0)|a—2a,p—28,n+1
S M*Ofil|\P|a,b,n‘T‘a72a,b726,n
< Mo 2, < Moa™ P2, ..

We have used the second inequality of equation (29) with 0. O
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5.4. Proof of Lemma 12

We recall thatF’ = A + G with G = 7%(G) + 7*(G) = G* 4+ G* € Xypm, & = [|G*||a,p,m.

d® = ||G®||apm, d* + d* < d,andm > 6. Lets = \/p € (p,1). LetQ = Q(s) = Q(/p) > 0

be the constant introduced in Lemma 15 ané- 1 + 2Q2. Let® = I + ¥ be the change
of variables wherel' € &, ,,—; is the solution given in Lemma 15 of the truncated linear
equation o A — AV = (G*)~¥ with K = s/b, so that

|\I/|a’,b’,m—1 S ||\I/||a’,b’,m—1 S Q||G’.||a’,b’,m S Qd.a (30)

forall0 < ¢ < aand0 < ¥ < b. Let® ! = I+ T be the inverse change studied in
Lemma 17. LetF = &' o F o ® be the transformed map. Lét = F — A be the new
remainder.

Henceforth, we will assume that b, andj are some positive constants such that

b<a<min{a/6,1/27}, 0<B<b/4, brob™ 'd<a+fp, ob™d<min(a,p).(31)

We split the proof in four steps.
Step 1: Control of the domain&lote thatﬁ(Daw) C Dy ysapisp foral 0 < ad <a— 4o
and0 < ¥ < b—4p4. Indeed,

F: Dy N Dy yapss - Dy 30,1423 L, Doy sa,p+38-
The behaviours of the changésand ®! follow directly from Lemma 17, which can be
applied since conditions (31) are more restrictive thanoties required in Lemma 17 when
p = Qd andn = m — 1. We also need that + 2o < a — 2a andd’ + 23 < b — 2/ in order
to control the inversé&—!, which explains the restrictions efand?’.
The behaviour of the map = A + G follows from the bound

|G|a,b,m < ||G||a,b,m S ||G*||a,b,m + ||G.||a,b,m =d" + d° S CZ

and condition$ + v™d < 2« andb™'d < 3, which are also a consequence of (31).
Step 2: Decomposition of the new remaindeturns out thaty = G* + Y~ G;, where

le _ (G.)zK —G* — (G')<K, GQ =God -G,

G3=VoA—-VoFod, Gi=(T+T)o(Fod).
IndeedG* + G, + Gy = God — (G)<FandGs + G, =V oA+ To (Fod),so
G +3 G =God+ AU+ To (Fod)
=(F—A)o®d+A® -1+ (' —1)o(Fod)
—PloFod—A=0G.
Finally, letG* = 7(G) = G* + 3_;_, 7 (G;) andG* = 7*(G) = 37, 7*(G)).
Step 3: Bounds of the projections of the new remaindemma 13 and the bound (30) will

be used several times in what follows. Below, we apply Lem®gtwice) and Lemma 17
(once). The required hypotheses in each case are satisiédad danditions (31).

(32)
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e If @ < aandb < b, then

1G5 = NG g < DG, 5, < 2K =Dge,

a,bm

o If @ <a—3aandb<b— 23, then

||G2||a,8,m < MQa_l||G||d+3a,5+26,m||\II||5L+a,l~),m71
S QMQa_l||G||d+3oz,l~)+2ﬂ,m||G.||d+o¢,l~),m
S QMQO{ilCZd..

The first inequality follows from Lemma 16 with = G, L =1, T, = ¥, I'; = 0,
| =m,andn = m — 1, sothatM, = M(a,b, 3,Qd,0,m,m — 1).
e lf @ < a—2xandb < b— f, then||F o & — Al < 0||Gl|apm- Indeed,

Fod— A= AU +Godand e
1AV |z 5m < 205 m < 200G |5 < 20d° < 20d,
|G o ‘I)||a,13,m—1 < O‘_1|G © (I)|&+a,l;,m—1 < a_1|G|a+2a,13+ﬁ,m—1
< Ofl”GHa+2a,8+ﬁ,m—1 < bailHG”ama,M@m
< ba M|Glapm < |G lapm < d.
We have used thak(D;, ;) C D 0,5, toboundGo @[5 .
o If a <a—3aandb <b-— 23, then
”é3”a,6,m < M3O‘_1H‘I"‘a+3a,6+25,m71HF od — AHZLJra,B,mfl
< M304_1Q||G.||a+3a,5+26,m‘7J

< Qo Mya~tdd".
The first inequality follows from Lemma 16 with = ¥, L = A, I'; = 0, ', =
Fo®— A/ l=m—1,andn =m — 1, so thatMs = M(«a,b, 3,0,0d,m — 1,m — 1).

o If @ <a—6aandb <b— 44, then
1Gallzhm < @ (X + W) 0 (Fod)|
S OzilHT + \I/Hd—i—oz,i),m S M4O[72||\I/||Z+6a,5+467m71
_ . 2
< Myo™? (QHG ||a+6a,13+4ﬁ,m)
< PMya?(d®)? < QP Mya2dd®.

The second inequality uses the inclusid@no ®)(D;, ;) C Dj 3,505 The fourth

one follows from Lemma 17 witl/, = M (a, b, 3,Qd, Qd, m — 1,m — 1). We need to
verify the hypothesig/,bp < 1 in this last lemma. It turns out that/,bp = M,bQd =
O(b™2), so it suffices to také < b < b, with b small enough.

o If @ <a—6aandb < b— 43, then
16 an < NG N + X2 Gl < d* + M,
1G*aon € St Gl < (72750 4 S1d) a,

B . -1 .
a,b,m a+a,b,m S a |T + \Ij|&+3a,b+2ﬁ,m

a,b,m

whereM = Qa~! (M, + o M; + Qa~'M,) and the constant¥/;, j = 2, 3,4, have been
defined previously.
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Step 4: Choice of the loss of analyticity domaikle seta = b andj3 = ub?/4. If b > 0 is
small enough, then conditions (31) hold for @l b < b. In addition,

M = M(a,b,3,c1,ca,1,n) = O(b'?) asb — 07,

where)M is the expression introduced in Lemma 16. If we take a — 6 andb = b — 48,
then the bounds of the previous step imply that

Hé*Ha,B,m < d*+MCZd., ”Go” b (e*u”Kb—l—McO d.,

where M = M(b;d,m,s) = Qb~' (My + oMs+ Qb~'M,) = O(b™5). We recall that
m>6,0<p<s<1,andK = s/b. Hence, if0 < b < b andb is small enough, then

1G g < A7 720 [G® g < 077

a,b,m

Indeed, Md < e 127 — 127 < =127/ if we take a small enough value bf
This ends the proof of the iterative lemma.

5.5. Proof of Theorem 11

Setp = /r € (0,1), p = 6(1 — p)/(a — a), andQ = Q(,/p), where the functiorf)(s)
is defined in Lemma 15. Lét be the positive constant associated to the integepr 6
in Lemma 12, the numbeis d, x> 0, and the exponeng € (0,1). Letc; = ¢ (r) =
QYm0 2™ e =co(r) =30, 5, 2™ andes = c3(r) = el

Let us check that, i, c2, andcs satisfy the properties given in Theorem 11.

Letag = a, df = d*, dy = d*, 0 < by = b/p < b, F = F = A+ G be the map given
in (19), G;; = 7 (G), andG}, = 7*(G). By recursively applying Lemma 12, we obtain a
sequence of changes of variablgs=1 + ¥, with ¥,, € X,,, | 4. , m—1, and a sequence of
mapskF,, = A+ G,,withG,, = G + G2, G} € X b andG;, € &; , ., such that

H\Ij Han 1,bn—1,m—1 < an 1) HGZHan,bn,m < d* ||G. Han,bn,m < d.

With a, 41 = a, — 6by, byy1 = by, — pb2, i = d + e 127°d2, anddy, | = e 127°d.

Let N be the biggest integer satisfyingb, < (a — a)/6. The sequence§,)o<n<n,
(bn)o<n<n, and(d?)o<n<n are decreasing. The sequeridg)o<,<x is increasing. Indeed,

ay = an—1 —6by_1 = an_1 —6by > -+ > ag — 6Nby > a,

by = by_1 — b > by_y — pbi > - > (1 — uNbo)be > pby = b,

d;\; < e—lQﬂpd;V_l <...< e—lanNd(o) < 036—271'7"(&—&)/1;(;0’

dy < dy_y +e #Pdy_ <o < dy + (ZnNzl 6_127rpn> dy < d" + cpd®,
andd; +ds < diy +dy < d*+ (1 +¢y)d* < dforalln=0,...,N.

We can applyV times the iterative lemma. L&t = A+ G = A + Gy = Fy be the
map obtained after thosg steps. Then

I7(G)
I7*(G)|

alv)m = ”ﬂ- (GN)”OLNbNm Sd* <d*+C CZ

&,b,m < ”ﬂ- (GN)”OLN bn,m < dN < c3e ~2mr(a- /bd.
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Finally, letd = & o - - -0 ®; be the change of variables such tfiat &' o F o . We want
to check thatb = I+ W for some¥ € X, ; ., suchtha¥|,; < cid*. We note that

v

\If:\I]l+...+\I]N’

where each term of the above summation is evaluated at aafiffargument. Nevertheless,
those arguments are not important when computing the sup:no

N N-1 N-1
o _19 _
Uit < D Unlay ypnrma SRy dy <Qd3 Y~ e 2" = o,
n=1 n=0 n=0

This ends the proof of Theorem 11.

5.6. Proof of Theorem 2

Let us begin with a simple, but essential, chain of ineqigalidssociated to certain analyticity
strip widths that will appear along the proof.dfe (0, a,), then there exists € (0,1), b > 0,
and some analyticity strip widths, @ = a,,,, anda = b, such that

O<b=:a:=a— (1+ba/r<a:=a,<a < a,. (33)

The first two reductions (that is, from, to a, and froma, to a,,) are as small as we want.

The third reduction (front = a,, to @ = a — (1 + b)a/r) should be a little bigger than

in order to get the desired exponentially small upper bouitld the exponentv. The fourth

reduction (that is, frond = b to 0) is also small, sincé can be taken as small as necessary.
This decreasing positive sequence of analyticity striptmsds associated to a similar

sequence of analyticity radii. To be precise, we will comstia sequence of the form

b<b<b<b, <by<b,, h:=b+b> < by/r.

The inequalityb < b,, does not correspond to a true reduction, but to a restrictiothe size
of b. Note that we have consumed all the analyticity strip widtlrathe last reduction, but
we still keep a positive analyticity radivs

We split the proof in the eight steps.
Step 1: Control of the Fourier normlf the analytic mapf satisfies the properties (i)—(iii)
listed in Lemma 1, then the map = A + G5 := f is real analytic and has the intersection
property on the cylindef x (—b.,b,), can be extended to the complex domaip ,., and
has the form (7). The Fourier norfi@zs ||, 5. » Mmay be infinite, but|Gs||,, s, 2 < oo for any
as € (0,a,) andby € (0,0,).
Step 2: Application of the averaging lemmaDnce fixed an integern > 6 and any
an, € (0,a9), we know from Lemma 10 that there exist an analytical radjusc (0, by)
and a change of variables of the foy, = I + ¥,, for someV,, € X, 5,1 such that the
transformed mag,, = ®,.! o F;, o ®,, is real analytic, has the intersection property on the
cylinderT x (—b,,, b,,), and has the fornk,,, = A + G,, for someG,,, € X, v,..m-
Step 3: Application of Theorem 1letr € (0, 1) be the number that appears in (33). Set
F=A+G=A+Gp,a=ay, andd = ||7*(G)|lapn.m + (L + c2(r))|17*(G) |l abm.m-
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Letb = b(m,a,d,r) > 0 be the constant stated in Theorem 11. We can assume that
b < b,, and the condition (33) holds, by taking a smaliex 0 if necessary. Let. € (0,b,)
be defined by, + (v.)> = by/r. Fix anyb € (0,0.). Seta = a — (1 + b)a/r and
b="b+b> <V + (V)2 =br.

If d* andd® are the norms defined in (19), theh + (1 + c,d*) < d. Hence, we
can apply Theorem 11 to obtain a change of variailes: 1+ U, with ¥ X, 5., and

V|, 5y < 1d® < c1d, and atransformed map= A+G = Lo Fod, withG € X, ; .,
|7T'(é) i < "W.(é) abm < CBG—Qnr(a—é)/bCzo < CBe_Qwa(l—i—I;)/bJ < Cge—Qna/bJ’ and
|7 (G) a,b,m < |[m(G) 4,b,m <d.

Step 4: Uniform estimates on the chanbe= ®,, o ®. By construction® = I + ¥, with
VeX,;, and[¥|,;, , <M, wherethe constait/ := c;d does not depend dn Thus,

v

(I)(.T,y) = (ZC _'_ym—l,&l(x’y%y_'_ymdb(x’y))

for some functions); (z, y) analytic onD,, ; = Dy, such thaty;|; .2 < M. The Cauchy
estimates imply that

W;](x)y” S M? |817723j(x7y)| S B_lMa |821Z}](x7y)| S b_QMa
for all (z,y) € T x By, and, in particular, for al{z,y) € T x (—b,b). Hence,
b(r.y) = (@ +0(y" ),y +0W™),  det|d(z.y)] =1+ 0" )

forall (z,y) € T x (—b,b), where theD(y™~?), O(y™ '), andO(y™) terms are uniform in

b. We recall thatn > 6 and the changé,, satisfies properties (17), so the complete change
® = ®,, o d satisfies the properties stated in Theorem 2.

Step 5: Exponentially small bound on the remain@erAfter all these changes of variables,
we have the magil = A+ G = F, with G = G € X,; , |7*(G) < d and

a,b,m? |d,7),m
[T (G g pm < cgde2/®, We can bound:* = 7*(G) by using the bound o6* = 7*(G)

and the intersection property &fon the cylindefl x (—b, b). We recall that if

G n) = "gi(&,n), 0" ga(&,m)),
for someg, g» € &, 4, then

G*(&m) = (0,7 g3(m),  G*(&m) = ("1 (&), ™95 (&),
whereg;(n) is the average of» (£, n) andgs = g2 — g5. Fix anyn, € (—b,b). We know that
F(T x {no}) N (T x {mo}) # 0.
Therefore, there existy € T such thai; (o) + g5(0,7m0) = 0, and so

b < cqde2m/b, Vn € (=b,b).

l95(n)| < sup |gs5] < |G®
TXB(,

This implies that|g;(¢,n)| < |G
(6777) €T x (_bv b)

< 2¢3de 2/t for all

b < G g £ 1G°

a,bom — a,b,m

a,b,m
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Step 6: Exponentially small bounds on some derivativeseofeimainderWe recall that

max {|g1(§, )], [95(&, )|} < |G
for all (¢,n) € D, ; = D42 Thus, we get frondy g = 9, g3 and the Cauchy estimates that
1019;(&,m)] < eyd ble 2l
max {|92g1 (€, 1), [0293(&,0)|} < cadb2e727/b,
forall (¢,1) € T x (=b,b).
Step 7: A crude bound on the derivativeydf We recall thatG*(¢, 1) = (0,7™ " g5(n)), so
l95(n)] < |G

Therefore, the Cauchy estimates imply tigt)’(n)| < b~2d for all , € B, and, in particular,
foralln € (=b,b).

Step 8: Computation of the constdikit By combining the inequalities obtained in Steps 5-7,
we get thatg;(&,n)| < Ke ?™/* and|9,g;(¢,1)] < Kb=2forall T x (—b,b), provided

K = dmax {2c3,c3 + 1} .

. J.—2ma/b
ahm < Cade

oo < Ci, \V/T] S Bl; = Bb+b2-

a,b,m

This ends the proof of Theorem 2.

6. Proof of Theorem 3

6.1. A space of matrix functions

Henceforth, letl, = (—b,b) C RandS, = T x [, with b > 0. Let.S be any compact subset
of S,. Letyy € N. Let M, be the set of all matrix functioris : S — M..»(RR) of the form

_ (& n) 0 e(En)
F&m = ( 77““’712(5777) n"y22(€, 1) ) ’

for some continuous functiong; : S — R. The setM , is a Banach space with the norm

HF”S“U« = maX{|fyZ](§7n)‘ : (€777> € Su 1 < Z7.7 < 2}

11
0 1
Let f : S — S be a map of the form (12) witl2 (¢, n)| < K, forall (£,7) € S. Then:

() TA € Mgy and|[TCA[[s 40 < 2[|T[[s ][ Al 50
(i) AT € Mg, and||A*T||s,, < (14 0Kk)||T|s,-
(i) TA* € Mg, and [T A5, < (14 bk)|IT]] s

(iv) To fi € Mg, and|[T o f7||s, < (1 + Kob™)HVII||T|g ..

Lemma 18.LetS C S, I' € Mg, A € Mg,, andA = . Letk e Nandj € Z.

Proof. Itis a straightforward computation. O
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6.2. A technical lemma

Let f be an analytic map of the form (12). Letandg be two relatively prime integers.
There exist two curve® = graph ¢ and R = graph ¢ and two RICSR, = graph ¢4 with
Diophantine rotation numbets. < p/q < w., all four contained in a small neighbourhood
of T x {p/q}, such thatf? projectsR onto R along the vertical direction ant and R are
contained in the strip of the cylinder enclosed by the RKCs Following Birkhoff [4, Section
VI] and Arnold [2, Section 20], allp, ¢)-periodic points off are contained itk N . Besides,
we will see later on that the (geometric) area enclosed letWeand R is an upper bound of
the quantities\»9). These are the reasons for the studyzaind R.

Let us prove that these four curves exist for big enough gerip In this case,
“big enough” only depends on the size of the nonintegrabimgeof f, the size of the
neighbourhood of" x {p/q}, the exponent:, and the winding number. On the contrary, it
does not dependn the particular map at hand. Therefore, every time thatske & be “big
enough” along the proof of the following lemma, it only degsron the quantitie&’, > 0,
c>1,m>4,peZ)\ {0}, andq, € N fixed at the first line of the next statement.

Lemma 19.Let Ky > 0, ¢ > 1, m > 4, andp,q, € N. Letq > ¢, be an integer
relatively prime withp. Setb = ¢?p/q. Letf : S, — T x R be an analytic map of the
form (12) such thatg;(&,7)| < Ko and|9;g;(&,n)] < Koo 2 for all (§,n) € S,. Let

(&qimq) = f1(&m). Let] = (p/c*q,c*p/q), I = (p/c*q.p/cq), and L. = (cp/q.*p/q).
There existg” = ¢/ (Ko, c,m,p,q.) > ¢. such that, ify > ¢”, the following properties hold:

() The mapf has two RICSR,. C T x I. C S, whose internal dynamics is conjugated to
a rigid rotation of anglesv. € I.., respectively;

(i) If S is the compact subset 6f enclosed by?_ and R, then

0

Geen >0 VEmes, (34)
(iii) There exist two unique analytic functiods T — I and( : T — I such that

FUEC)) = (6.0(€),  VEET, (35)

and all the(p, q)-periodic points of the restrictiotf|s are contained irgraph ¢.

The same statement holdsyifis a negative integerh = c*|pl/q, I = (*p/q,p/c%q),
I- = (*p/q,cp/q),and I, = (p/cq, p/c*q).

Proof. Let us assumg > 0. The case < 0 is analogous.

First, the existence of the RIG%_ and R, follows from some quantitative estimates in
KAM theory established by Lazutkin [21, Theorem 2]. To beqgwe, Lazutkin proved that
there exist$, = b (K,) > 0 such that itv € (—V/,, t/,) satisfies the Diophantine condition

2w —i/j] > il (36)

for all integersj > 1 andi, thenf has a RICR = { = w + O(w™)} whose internal
dynamics is”!-conjugated to a rigid rotation of angle for a suitabld > 1. The conjugation
is O(1/¢™!)-close to the identity. Item (i) follows directly from thistmate, because there
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exist some real numbets, € (¢*3p/q,c?p/q) C I, andw_ € (p/c3q,p/c*3q) C I_
satisfying the Diophantine condition (36), provided big enough.

Second, let us check that the power nydsatisfies (34). The compact subset S, is
invariant by f, because it is delimited by RICs. Thus, all pow&is ;) = f7(¢,n) are well
defined onS. We writeD f(£,n) = A+T'(¢,n), whereA was introduced in Lemma 18. Next,
we compute the differential of the power map:

Dff=(A+T,) - (A+T)=AT+ Ay +---+ A, (37)
wherel'; = ' o f7 andA, is the sum of all the products of the foraf:['j, - - - AR AR+t
withk; > 0,g> 751 > jo>--->j5 > 1,andg =1 + ZE k;. These products are elements
of Mg ., becausé’ € Mg,,. Indeed, ifC' = ||I'|| s, then
| ARy, - - - AR AR <27 ART flsm - - [AMT (sl | AST 5, AR [

< 2NN (1 4 bk) [Ty (1 4 Kopb™) 07
< 271C" exp (UL ks + 0 (m + 1) Ko™

< 2Ll P Koc®™p™ o9l

HS,ml

where we have used Lemma 18, inequality = < e” for z > 0, Ziﬁ ki <q,1<4q,j <q,
b= %p/q, andm > 4. We have also define@d’ = e~ 2+m+)Koc*"p™ /o

The matrixA, is the sum of the products with precisélyactorsI';. This shows that
there are(j’) terms inside),. Therefore A; € Mg, and

< C'(209)" (38)

HAle,ml = (C;) HAlejl o 'AleﬁAkHl Hs,ml

The element of the first row and second colummiéfis equal tag, so

&,
on

q ;4

(&) = q‘ <Yy (20q) 0 < % 3 (2K 2)!

=1 =1
< 4C/K0qu—3 < 4C/K002(m—3)pm—3’

forall (£,7) € S C S,, which implies the twist condition (34) provided thats big enough.
Here, we have used relation (37), bound (38} ¢*p/q, andm > 4. We have also used that
C < Kob~2 and2Kyqb™ 2 < 1/2, providedg is big enough.

Third, we establish the existence of the functicgr;é" : T — I. We know from
Lazutkin [21] thatR. = graph (. for some differentiable functions,. : T — .. We
work with the lifts ', =,, and Z. of the objectsf, ¢,, and(.. The RICs are invariant, so
Fi1(&,7Z.(€)) = (2£(8), Z1(24(€))) for some differentiable functioris,. : R — R. If we
prove that there exist two unique analytic 1-periodic fions$ Z, Z : R — I such that

FI&,Z(8) = (E+p Z(E+p), VER, (39)

then item (iii) follows. Since the dynamics & on R.. is C'-conjugated to a rigid rotation
of angleqw, through a0(1/¢™!)-close to the identity conjugation,

2§ =E+qui +0(1/¢" ) =&+ ep+O(1/¢" ") > E+p
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provided that; is big enough. Analogously, we obtath (£) < £ + p. Thatis,

(6 Z-(©) =E-(6) < € +p < Ei() = 5,6, Z,(9)),  VEER

Since=, (&, n) is analytic and strictly increasing fore (Z_(¢), Z,.(€)) C I, we deduce that
there exists a unique functich: R — I such tha&, (¢, Z(£)) = € + p.

The functionS > (§,n) — G(&,n) = Z,(&,n) — & — p is analytic and%(g,n) > 0,
S0 Z is analytic by the Implicit Function Theorem. Theperiodicity of Z follows from the
uniqueness and the proper (¢ + 1,7) = Fi(¢,n) + (1,0). FunctionZ : R — I is
defined by means of relation (39). Finally, functions, : T — I are the projections of
7.7 :R—1. O

6.3. Proof of Theorem 3: Casen,n) = (0,1)

If (m,n) = (0,1), by hypothesis,themap: T x I — T x I, (s,r) — (s1,71), iS an analytic
exact twist map with &a., b,)-analytic(0, 1)-resonant RIC, such that < 0 < p,. The map
f = g™ = g satisfies the properties (i)—(iii) listed in Lemma 1 in soméable coordinates
(z,y). Let(s,r) = ®(x,y) be the associated change of variables. et ®' o f o ® be
the new map defined in the domain (8). Note that(theb.)-analytic(0, 1)-resonant RIC is
C = {y =0} inthe(x,y) coordinates.

Let p be an integer such that< |p| < L. Letc € (1,2) such thatx < ?a < a,. We
takec’«a as then appearing in Theorem 2 = 4, andb = ¢?|p|/q, provided tha is relatively
prime withp and is large enough so thétp|/q < 0. = V,(«). Thatis,q > ¢, := 3|p|/b..

Hence, there exisky, K; > 0, both independent of, and a change of coordinates
(z,y) = ®(&,n) such thatf = ®'o fod : S — T x R is an analytic map of the
form (12) such thaly; (¢, )| < Koe 2/ = Koe 2 /Pl < K, |9,9,(€,7)] < Kob~2, and
sup{|det[D® (&, n)]|} < K; forall (£,7n) € S.

The mapf : S, — T x R satisfies the hypotheses of Lemma 19 for any ¢.. Let
¢. be the maximum value aof’ among the integer8 < [p| < L. Let R. be the RICs with
rotation numbersu, given in Lemma 19. LefS be the compact subset 6f enclosed by
R_andR,. Sincef is globally twist andp_ < w_ < p/q < wy < g4, all the Birkhoff
(p, q)-periodic orbits off are contained irt. By Lemma 19, anyp, ¢)-periodic orbit inS
lies onR = graph(. Let() C S be the domain enclosed by the curvgs= graph ¢ and
R = graph(. Let B = (® o $)(12). Let K, be the supremum dfdet[D®]| in the compact
setT x [—b,,b.]. Let K = 4K\K,K,L(b.)%. Then, following the arguments contained in

* 7 Tk

Subsection 2.2 about the difference of periodic actionsyete¢hat

(&) - ¢(6)] g
< K1K2qb4[(oe*27raq/\p\ < Ke*2ﬂaf1/|l>|7 (40)

APD < Area[B] < KK, Area[Q)] = KlKQ/
T

for all relatively prime integerp andq with 1 < |p| < L andgq > ¢.. We have used
expression (12)) = ?|p|/q < V., ¢* < 4, the bounds on the nonintegrable termé&, n),
and the bounds on the Jacobians of the changes of varialdad .
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This ends the proof of Theorem 3 whém,n) = (0,1) andg > ¢.. By redefining the
constanti’, the same bound holds for all> 1.

6.4. Proof of Theorem 3: General case

We reduce the general case to the previous one. We splitghenant in four steps.
Step 1: About the rational rotation numbers$f. C' is a (m,n)-resonant RIC ands, ) is
a (p, q)-periodic point ofg, thenC'is a(m, 1)-resonant RIC ands, r) is a(p’, ¢’)-periodic
point of the power mag = ¢", where

pl — np q/ — q )

ged(n, q)’ ged(n, q)

By taking the suitable lift"” of f, we can assume thatis a(0, 1)-resonant RIC ands, ) is
a(p”,q")-periodic point off, with p” /¢" = p' /¢’ — m. Thatis,

p":p'—mq/:np_mq, q//:q/: q .

ged(n, q) ged(n, q)

If p andq are relatively prime integers such tHat |np —mgq| < L andq > q., p” andq” are
relatively prime integers such that'| < L/ ged(n, q) < L andq” > ¢./ ged(n, q) > q./n.
Step 2: About the Lagrangianket G andF’ = G™ be the lifts ofg and f = ¢" we are dealing
with. If G*\ — X\ = dh, then

(41)

n—1
Fx=X=> [(G"")' A= Zd hoGY) (ZhoG]>
j=0
S0/(sg, Sn) := h(so, $1) +h(s1,s2)+-- -+ h(s,—1,s,) iS a Lagrangian of . This Lagrangian
is well defined in a neighbourhood of the resonant Riecausg is twist onC'.
Step 3: About the periodic actionket O be the(p, ¢)-periodic orbit ofg through the point
(s,7), beingW®2[0] its (p, q)-periodic action. LeD” be the(p”, ¢")-periodic orbit of f
through the same point, bein§”®*".7")[0"] its (p", ¢ )-periodic action. We deduce from the
previous steps and a straightforward computation that
n(p”q "mno_ n (p,q)
W 0" aed(n, q)W [0]. (42)
Step 4: Final bound.The result follows directly from the bound (40) taking intocaunt
relations (41) and (42). We just note that

o2 /19| — e (_ 2waq ) '
[np — mq|
This ends the proof of Theorem 3.

1/ //
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