299 research outputs found
JNK3 Is Required for the Cytoprotective Effect of Exendin 4.
Preservation of beta cell against apoptosis is one of the therapeutic benefits of the glucagon-like peptide-1 (GLP1) antidiabetic mimetics for preserving the functional beta cell mass exposed to diabetogenic condition including proinflammatory cytokines. The mitogen activated protein kinase 10 also called c-jun amino-terminal kinase 3 (JNK3) plays a protective role in insulin-secreting cells against death caused by cytokines. In this study, we investigated whether the JNK3 expression is associated with the protective effect elicited by the GLP1 mimetic exendin 4. We found an increase in the abundance of JNK3 in isolated human islets and INS-1E cells cultured with exendin 4. Induction of JNK3 by exendin 4 was associated with an increased survival of INS-1E cells. Silencing of JNK3 prevented the cytoprotective effect of exendin 4 against apoptosis elicited by culture condition and cytokines. These results emphasize the requirement of JNK3 in the antiapoptotic effects of exendin 4
Adaptive changes of human islets to an obesogenic environment in the mouse
Routing protocols in wireless sensor networks (WSN) face two main challenges: first, the challenging environments in which WSNs are deployed negatively affect the quality of the routing process. Therefore, routing protocols for WSNs should recognize and react to node failures and packet losses. Second, sensor nodes are battery-powered, which makes power a scarce resource. Routing protocols should optimize power consumption to prolong the lifetime of the WSN. In this paper, we present a new adaptive routing protocol for WSNs, we call it M^2RC. M^2RC has two phases: mesh establishment phase and data forwarding phase. In the first phase, M^2RC establishes the routing state to enable multipath data forwarding. In the second phase, M^2RC forwards data packets from the source to the sink. Targeting hop-by-hop reliability, an M^2RC forwarding node waits for an acknowledgement (ACK) that its packets were correctly received at the next neighbor. Based on this feedback, an M^2RC node applies multiplicative-increase/additive-decrease (MIAD) to control the number of neighbors targeted by its packet broadcast. We simulated M^2RC in the ns-2 simulator and compared it to GRAB, Max-power, and Min-power routing schemes. Our simulations show that M^2RC achieves the highest throughput with at least 10-30% less consumed power per delivered report in scenarios where a certain number of nodes unexpectedly fail.National Science Foundation (ITR ANI-0205294, EIA-0202067, ANI-0095988, ANI-9986397
Proliferation of sorted human and rat beta cells
Aims/hypothesis: The aim of the study was to determine whether purified beta cells can replicate in vitro and whether this is enhanced by extracellular matrix (ECM) and growth factors. Methods: Human beta cells were purified by FACS by virtue of their high zinc content using Newport Green, and excluding ductal and dead cells. Rat beta cells were sorted by autofluorescence or using the same method developed for human cells. Cells were plated on poly-l-lysine or ECMs from rat or human bladder carcinoma cells or bovine corneal ECM and incubated in the presence of BrdU with or without growth factors. Results: The newly developed method for sorting human beta cells yields a population containing 91.4â±â2.8% insulin-positive cells with a low level of spontaneous apoptosis and a robust secretory response to glucose. Beta cells from 8-week-old rats proliferated in culture and this was increased by ECM. Among growth factors, only human growth hormone (hGH) and the glucagon-like peptide-1 analogue liraglutide enhanced proliferation of rat beta cells, with a significant increase on both poly-l-lysine and ECM. By contrast, sorted adult human beta cells from 16 donors aged 48.9â±â14.3years (range 16-64years) failed to replicate demonstrably in vitro regardless of the substratum or growth factors used. Conclusions/interpretation: These findings indicate that, in our conditions, the fully differentiated human adult insulin-producing beta cell was unable to proliferate in vitro. This has important implications for any attempt to expand cells from pancreases of donors of this age group. By contrast, the rat beta cells used here were able to divide in vitro, and this was enhanced by ECM, hGH and liraglutid
Decreased STARD10 expression is associated with defective insulin secretion in humans and mice
Genetic variants near ARAP1 (CENTD2) and STARD10 influence type 2 diabetes (T2D) risk. The risk alleles impair glucose-induced insulin secretion and, paradoxically but characteristically, are associated with decreased proinsulin:insulin ratios, indicating improved proinsulin conversion. Neither the identity of the causal variants nor the gene(s) through which risk is conferred have been firmly established. Whereas ARAP1 encodes a GTPase activating protein, STARD10 is a member of the steroidogenic acute regulatory protein (StAR)-related lipid transfer protein family. By integrating genetic fine-mapping and epigenomic annotation data and performing promoter-reporter and chromatin conformational capture (3C) studies in ÎČ cell lines, we localize the causal variant(s) at this locus to a 5 kb region that overlaps a stretch-enhancer active in islets. This region contains several highly correlated T2D-risk variants, including the rs140130268 indel. Expression QTL analysis of islet transcriptomes from three independent subject groups demonstrated that T2D-risk allele carriers displayed reduced levels of STARD10 mRNA, with no concomitant change in ARAP1 mRNA levels. Correspondingly, ÎČ-cell-selective deletion of StarD10 in mice led to impaired glucose-stimulated Ca2+ dynamics and insulin secretion and recapitulated the pattern of improved proinsulin processing observed at the human GWAS signal. Conversely, overexpression of StarD10 in the adult ÎČ cell improved glucose tolerance in high fat-fed animals. In contrast, manipulation of Arap1 in ÎČ cells had no impact on insulin secretion or proinsulin conversion in mice. This convergence of human and murine data provides compelling evidence that the T2D risk associated with variation at this locus is mediated through reduction in STARD10 expression in the ÎČ cell
Does intraoperative neuromonitoring of recurrent nerves have an impact on the postoperative palsy rate? Results of a prospective multicenter study
BACKGROUND: The impact of intraoperative neuromonitoring on recurrent laryngeal nerve palsy remains debated. Our aim was to evaluate the potential protective effect of intraoperative neuromonitoring on recurrent laryngeal nerve during total thyroidectomy.
METHODS: This was a prospective, multicenter French national study. The use of intraoperative neuromonitoring was left at the surgeons\u27 choice. Postoperative laryngoscopy was performed systematically at day 1 to 2 after operation and at 6 months in case of postoperative recurrent laryngeal nerve palsy. Univariate and multivariate analyses and propensity score (sensitivity analysis) were performed to compare recurrent laryngeal nerve palsy rates between patients operated with or without intraoperative neuromonitoring.
RESULTS: Among 1,328 patients included (females 79.9%, median age 51.2 years, median body mass index 25.6âkg/m), 807 (60.8%) underwent intraoperative neuromonitoring. Postoperative abnormal vocal cord mobility was diagnosed in 131 patients (9.92%), including 69 (8.6%) and 62 (12.1%) in the intraoperative neuromonitoring and nonintraoperative neuromonitoring groups, respectively. Intraoperative neuromonitoring was associated with a lesser rate of recurrent laryngeal nerve palsy in univariate analysis (odds ratioâ=â0.68, 95% confidence interval, 0.47; 0.98, Pâ=â.04) but not in multivariate analysis (oddsratioâ=â0.74, 95% confidence interval, 0.47; 1.17, Pâ=â.19), or when using a propensity score (odds ratioâ=â0.76, 95% confidence interval, 0.53; 1.07, Pâ=â.11). There was no difference in the rates of definitive recurrent laryngeal nerve palsy (0.8% and 1.3% in intraoperative neuromonitoring and non-intraoperative neuromonitoring groups respectively, Pâ=â.39). The sensitivity, specificity, and positive and negative predictive values of intraoperative neuromonitoring for detecting abnormal postoperative vocal cord mobility were 29%, 98%, 61%, and 94%, respectively.
CONCLUSION: The use of intraoperative neuromonitoring does not decrease postoperative recurrent laryngeal nerve palsy rate. Due to its high specificity, however, intraoperative neuromonitoring is useful to predict normal vocal cord mobility. From the CHU de Nantes, Clinique de Chirurgie Digestive et Endocrinienne, Nantes, France; CHU Lille, Université de Lille, Chirurgie Générale et Endocrinienne, Lille, France; CHU Nancy-HÎpital de Brabois, Service de Chirurgie Digestive, Hépato-Biliaire, et Endocrinienne, Nancy, France; CHU Angers, Chirurgie Digestive et Endocrinienne, Angers, France; CHU de Toulouse-HÎpital Larrey, Chirurgie Thoracique, PÎle Voies Respiratoires, Toulouse; CHU Saint-Etienne-HÎpital Nord, ORL et Chirurgie Cervico-Faciale et Plastique, Saint-Etienne, France; CHU de Limoges-HÎpital Dupuytren, Chirurgie Digestive, Générale et Endocrinienne, Limoges, France; CHU de Besançon-HÎpital Jean Minjoz, Chirurgie Digestive, Besançon, France; Centre Hospitalier du Mans, Service ORL et Chirurgie Cervico-Faciale, Le Mans, France; Centre Hospitalier Lyon-Sud, Chirurgie Générale, Endocrinienne, Digestive et Thoracique, Pierre Bénite, France; AP-HM-HÎpital de La Conception, Chirurgie Générale, Marseille, France; CHU de Rennes-HÎpital Pontchaillou, Service ORL et Chirurgie Maxillo-Faciale, Rennes, France; CHU de Caen, ORL et Chirurgie Cervico-Faciale, Caen, France; CHU d\u27Angers, ORL et Chirurgie Cervico-Faciale, Angers, France; CHU de Nantes, Service ORL, Nantes, France; AP HP URCEco ßle-de-France, hÎpital de l\u27HÎtel-Dieu, Paris, France; DRCI, département Promotion, Nantes, France
18F-Labelled exendin to image GLP-1 receptor-expressing tissues: from niche to blockbuster?
Item does not contain fulltext1 maart 201
Impact of body mass index on post-thyroidectomy morbidity
BACKGROUND: The impact of obesity on total thyroidectomy (TT) morbidity (recurrent laryngeal nerve palsy and hypocalcaemia) remains largely unknown.
METHODS: In a prospective study (NCT01551914), patients were divided into five groups according to their body mass index (BMI): underweight, normal weight, overweight, obese, and severely obese. Preoperative and postoperative serum calcium was measured. Recurrent laryngeal nerve (RLN) function was evaluated before discharge, and if abnormal, at 6 months.
RESULTS: In total 1310 patients were included. Baseline characteristics were similar across BMI groups except for age and sex. Postoperative hypocalcaemia was more frequent in underweight compared to obese patients but the difference was not statistically significant in multivariate analysis. There was no difference between groups in terms of definitive hypocalcaemia, transient and definitive RLN palsy, and postoperative pain.
CONCLUSION: Obesity does not increase intraoperative and postoperative morbidity of TT, despite a longer duration of the procedure
Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL.
Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment
Exome-Wide Association Study on Alanine Aminotransferase Identifies Sequence Variants in the GPAM and APOE Associated With Fatty Liver Disease
Background & Aims: Fatty liver disease (FLD) is a growing epidemic that is expected to be the leading cause of end-stage liver disease within the next decade. Both environmental and genetic factors contribute to the susceptibility of FLD. Several genetic variants contributing to FLD have been identified in exome-wide association studies. However, there is still a missing hereditability indicating that other genetic variants are yet to be discovered. Methods: To find genes involved in FLD, we first examined the association of missense and nonsense variants with alanine aminotransferase at an exome-wide level in 425,671 participants from the UK Biobank. We then validated genetic variants with liver fat content in 8930 participants in whom liver fat measurement was available, and replicated 2 genetic variants in 3 independent cohorts comprising 2621 individuals with available liver biopsy. Results: We identified 190 genetic variants independently associated with alanine aminotransferase after correcting for multiple testing with Bonferroni method. The majority of these variants were not previously associated with this trait. Among those associated, there was a striking enrichment of genetic variants influencing lipid metabolism. We identified the variants rs2792751 in GPAM/GPAT1, the gene encoding glycerol-3-phosphate acyltransferase, mitochondrial, and rs429358 in APOE, the gene encoding apolipoprotein E, as robustly associated with liver fat content and liver disease after adjusting for multiple testing. Both genes affect lipid metabolism in the liver. Conclusions: We identified 2 novel genetic variants in GPAM and APOE that are robustly associated with steatosis and liver damage. These findings may help to better elucidate the genetic susceptibility to FLD onset and progression
- âŠ