200 research outputs found

    Assimilation of Oil-Derived Elements by Oysters Due to the Deepwater Horizon Oil Spill

    Get PDF
    During and after the Deepwater Horizon Oil Spill (DWHOS), oysters (Crassostrea virginica) were exposed to oil and susceptible to incidental consumption of surface and subsurface oil materials. We determined the contribution of oil materials from the DWHOS to diet of oysters by comparing carbon (C) and nitrogen (N) stable isotope ratios in oyster shell to ratios in suspended particulate matter (SPM) and in fresh and weathered oil. Average δ13C and δ15N values in oyster shell (−21 ± 1‰ and 9−11‰, respectively) were consistent with consumption of naturally available SPM as opposed to values in oil (−27 ± 0.2‰, 1.6 ± 0.4‰). Stable isotope ratios in oyster adductor muscle were similar to shell for δ15N but not δ13C, suggesting either a recent shift in diet composition or differential assimilation of C between tissue types. We found no evidence of assimilation of oil-derived C and N and, therefore, no evidence of an oyster-based conduit to higher trophic levels. Trace elements in shell were inconclusive to corroborate oil exposure. These findings are not an indication that oysters were not exposed to oil; rather they imply oysters either did not consume oil-derived materials or consumed too little to be detectable compared to natural diet

    Protein Binding of Lopinavir and Ritonavir During 4 Phases of Pregnancy: Implications for Treatment Guidelines

    Get PDF
    To investigate the intraindividual pharmacokinetics of total (protein bound + unbound) and unbound lopinavir/ritonavir (LPV/RTV) and to assess whether the pediatric formulation (100mg/25mg) can overcome any pregnancy-associated changes

    Spatio-Temporal Variation in Length-Weight Relationships and Condition of the Ribbonfish Trichiurus lepturus (Linnaeus, 1758): Implications for Fisheries Management

    Get PDF
    Knowledge of length-weight relationships for commercially exploited fish is an important tool for assessing and managing of fish stocks. However, analyses of length-weight relationship fisheries data typically do not consider the inherent differences in length-weight relationships for fish caught from different habitats, seasons, or years, and this can affect the utility of these data for developing condition indices or calculating fisheries biomass. Here, we investigated length-weight relationships for ribbonfish Trichiurus lepturus in the waters of the Arabian Sea off Oman collected during three periods (2001-02, 2007-08, and 2014-15) and showed that a multivariate modelling approach that considers the areas and seasons in which ribbonfish were caught improved estimation of length-weight relationships. We used the outputs of these models to explore spatio-temporal variations in condition indices and relative weights among ribbonfish, revealing fish of 85-125 cm were in the best overall condition. We also found that condition differed according to where and when fish were caught, with condition lowest during spring and pre-south-west monsoon periods and highest during and after the south-west monsoons. We interpret these differences to be a consequence of variability in temperature and food availability. Based on our findings, we suggest fishing during seasons that have the lowest impact on fish condition and which are commercially most viable; such fishery management would enhance fisheries conservation and economic revenue in the region

    Integrative Analysis of the Mitochondrial Proteome in Yeast

    Get PDF
    In this study yeast mitochondria were used as a model system to apply, evaluate, and integrate different genomic approaches to define the proteins of an organelle. Liquid chromatography mass spectrometry applied to purified mitochondria identified 546 proteins. By expression analysis and comparison to other proteome studies, we demonstrate that the proteomic approach identifies primarily highly abundant proteins. By expanding our evaluation to other types of genomic approaches, including systematic deletion phenotype screening, expression profiling, subcellular localization studies, protein interaction analyses, and computational predictions, we show that an integration of approaches moves beyond the limitations of any single approach. We report the success of each approach by benchmarking it against a reference set of known mitochondrial proteins, and predict approximately 700 proteins associated with the mitochondrial organelle from the integration of 22 datasets. We show that a combination of complementary approaches like deletion phenotype screening and mass spectrometry can identify over 75% of the known mitochondrial proteome. These findings have implications for choosing optimal genome-wide approaches for the study of other cellular systems, including organelles and pathways in various species. Furthermore, our systematic identification of genes involved in mitochondrial function and biogenesis in yeast expands the candidate genes available for mapping Mendelian and complex mitochondrial disorders in humans

    Development of a Model System to Identify Differences in Spring and Winter Oat

    Get PDF
    Our long-term goal is to develop a Swedish winter oat (Avena sativa). To identify molecular differences that correlate with winter hardiness, a winter oat model comprising of both non-hardy spring lines and winter hardy lines is needed. To achieve this, we selected 294 oat breeding lines, originating from various Russian, German, and American winter oat breeding programs and tested them in the field in south- and western Sweden. By assaying for winter survival and agricultural properties during four consecutive seasons, we identified 14 breeding lines of different origins that not only survived the winter but also were agronomically better than the rest. Laboratory tests including electrolytic leakage, controlled crown freezing assay, expression analysis of the AsVrn1 gene and monitoring of flowering time suggested that the American lines had the highest freezing tolerance, although the German lines performed better in the field. Finally, six lines constituting the two most freezing tolerant lines, two intermediate lines and two spring cultivars were chosen to build a winter oat model system. Metabolic profiling of non-acclimated and cold acclimated leaf tissue samples isolated from the six selected lines revealed differential expression patterns of 245 metabolites including several sugars, amino acids, organic acids and 181 hitherto unknown metabolites. The expression patterns of 107 metabolites showed significant interactions with either a cultivar or a time-point. Further identification, characterisation and validation of these metabolites will lead to an increased understanding of the cold acclimation process in oats. Furthermore, by using the winter oat model system, differential sequencing of crown mRNA populations would lead to identification of various biomarkers to facilitate winter oat breeding

    High interannual variability in connectivity and genetic pool of a temperate clingfish matches oceanographic transport predictions

    Get PDF
    Adults of most marine benthic and demersal fish are site-attached, with the dispersal of their larval stages ensuring connectivity among populations. In this study we aimed to infer spatial and temporal variation in population connectivity and dispersal of a marine fish species, using genetic tools and comparing these with oceanographic transport. We focused on an intertidal rocky reef fish species, the shore clingfish Lepadogaster lepadogaster, along the southwest Iberian Peninsula, in 2011 and 2012. We predicted high levels of self-recruitment and distinct populations, due to short pelagic larval duration and because all its developmental stages have previously been found near adult habitats. Genetic analyses based on microsatellites countered our prediction and a biophysical dispersal model showed that oceanographic transport was a good explanation for the patterns observed. Adult sub-populations separated by up to 300 km of coastline displayed no genetic differentiation, revealing a single connected population with larvae potentially dispersing long distances over hundreds of km. Despite this, parentage analysis performed on recruits from one focal site within the Marine Park of Arrabida (Portugal), revealed self-recruitment levels of 2.5% and 7.7% in 2011 and 2012, respectively, suggesting that both long-and short-distance dispersal play an important role in the replenishment of these populations. Population differentiation and patterns of dispersal, which were highly variable between years, could be linked to the variability inherent in local oceanographic processes. Overall, our measures of connectivity based on genetic and oceanographic data highlight the relevance of long-distance dispersal in determining the degree of connectivity, even in species with short pelagic larval durations

    Genome-Wide Local Ancestry Approach Identifies Genes and Variants Associated with Chemotherapeutic Susceptibility in African Americans

    Get PDF
    Chemotherapeutic agents are used in the treatment of many cancers, yet variable resistance and toxicities among individuals limit successful outcomes. Several studies have indicated outcome differences associated with ancestry among patients with various cancer types. Using both traditional SNP-based and newly developed gene-based genome-wide approaches, we investigated the genetics of chemotherapeutic susceptibility in lymphoblastoid cell lines derived from 83 African Americans, a population for which there is a disparity in the number of genome-wide studies performed. To account for population structure in this admixed population, we incorporated local ancestry information into our association model. We tested over 2 million SNPs and identified 325, 176, 240, and 190 SNPs that were suggestively associated with cytarabine-, 5′-deoxyfluorouridine (5′-DFUR)-, carboplatin-, and cisplatin-induced cytotoxicity, respectively (p≤10−4). Importantly, some of these variants are found only in populations of African descent. We also show that cisplatin-susceptibility SNPs are enriched for carboplatin-susceptibility SNPs. Using a gene-based genome-wide association approach, we identified 26, 11, 20, and 41 suggestive candidate genes for association with cytarabine-, 5′-DFUR-, carboplatin-, and cisplatin-induced cytotoxicity, respectively (p≤10−3). Fourteen of these genes showed evidence of association with their respective chemotherapeutic phenotypes in the Yoruba from Ibadan, Nigeria (p<0.05), including TP53I11, COPS5 and GAS8, which are known to be involved in tumorigenesis. Although our results require further study, we have identified variants and genes associated with chemotherapeutic susceptibility in African Americans by using an approach that incorporates local ancestry information

    Unfolded protein response in cancer: the Physician's perspective

    Get PDF
    The unfolded protein response (UPR) is a cascade of intracellular stress signaling events in response to an accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum (ER). Cancer cells are often exposed to hypoxia, nutrient starvation, oxidative stress and other metabolic dysregulation that cause ER stress and activation of the UPR. Depending on the duration and degree of ER stress, the UPR can provide either survival signals by activating adaptive and antiapoptotic pathways, or death signals by inducing cell death programs. Sustained induction or repression of UPR pharmacologically may thus have beneficial and therapeutic effects against cancer. In this review, we discuss the basic mechanisms of UPR and highlight the importance of UPR in cancer biology. We also update the UPR-targeted cancer therapeutics currently in clinical trials

    Drivers of reef shark abundance and biomass in the Solomon Islands

    Get PDF
    Remote island nations face a number of challenges in addressing concerns about shark population status, including access to rigorously collected data and resources to manage fisheries. At present, very little data are available on shark populations in the Solomon Islands and scientific surveys to document shark and ray diversity and distribution have not been completed. We aimed to provide a baseline of the relative abundance and diversity of reef sharks and rays and assess the major drivers of reef shark abundance/biomass in the Western Province of the Solomon Islands using stereo baited remote underwater video. On average reef sharks were more abundant than in surrounding countries such as Fiji and Indonesia, yet below that of remote islands without historical fishing pressure, suggesting populations are relatively healthy but not pristine. We also assessed the influence of location, habitat type/complexity, depth and prey biomass on reef shark abundance and biomass. Location was the most important factor driving reef shark abundance and biomass with two times the abundance and a 43% greater biomass of reef sharks in the more remote locations, suggesting fishing may be impacting sharks in some areas. Our results give a much needed baseline and suggest that reef shark populations are still relatively unexploited, providing an opportunity for improved management of sharks and rays in the Solomon Islands
    corecore