35 research outputs found

    Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma

    Get PDF
    SummaryWe describe a comprehensive genomic characterization of adrenocortical carcinoma (ACC). Using this dataset, we expand the catalogue of known ACC driver genes to include PRKAR1A, RPL22, TERF2, CCNE1, and NF1. Genome wide DNA copy-number analysis revealed frequent occurrence of massive DNA loss followed by whole-genome doubling (WGD), which was associated with aggressive clinical course, suggesting WGD is a hallmark of disease progression. Corroborating this hypothesis were increased TERT expression, decreased telomere length, and activation of cell-cycle programs. Integrated subtype analysis identified three ACC subtypes with distinct clinical outcome and molecular alterations which could be captured by a 68-CpG probe DNA-methylation signature, proposing a strategy for clinical stratification of patients based on molecular markers

    MicroRNAs in the tumour microenvironment: big role for small players

    No full text
    MicroRNAs (miRNAs) represent a class of small non-coding RNAs with an important regulatory role in various physiological processes as well as in several pathologies including cancers. It is noteworthy that recent evidence suggests that the regulatory role of miRNAs during carcinogenesis is not limited to the cancer cells but they are also implicated in the activation of tumour stroma and its transition into a cancer-associated state. Results from experimental studies involving cells cultured in vitro and mice bearing experimental tumours, corroborated by profiling of clinical cancers for miRNA expression, underline this role and identify miRNAs as a potent regulator of the crosstalk between cancer and stroma cells. Considering the fundamental role of the tumour microenvironment in determining both the clinical characteristics of the disease and the efficacy of anticancer therapy, miRNAs emerge as an attractive target bearing important prognostic and therapeutic significance during carcinogenesis. In this article, we will review the available results that underline the role of miRNAs in tumour stroma biology and emphasise their potential value as tools for the management of the disease

    Differential expression of senescence tumour markers and its implications on survival outcomes of breast cancer patients

    No full text
    Breast cancer is a heterogeneous disease displaying different histopathological characteristics, molecular profiling and clinical behavior. This study describes the expression patterns of senescence markers P53, DEC1 and DCR2 and assesses their significance on patient survival as a single or combined marker with P16 or P14 using breast cancer progression series. One thousand and eighty (1080) patients with primary invasive ductal carcinoma, no special type, were recruited through an 11-year retrospective study period. We constructed tissue microarrays of normal, benign hyperplasia, ductal carcinoma in situ and invasive ductal carcinoma from each patient and performed immunohistochemical staining to study the protein expression. Statistical analysis includes Pearson chi-square, Kaplan-Meier log ran test and Cox proportional hazard regression were undertaken to determine the associations and predict the survival outcomes. P53, DEC1 and DCR2 expression correlated significantly with normal, benign, premalignant and malignant tissues with (p<0.05). The expression profile of these genes increases from normal to benign to premalignant and plateaued from premalignant to malignant phenotype. There is a significant association between P53 protein expression and age, grade, staging, lymphovascular invasion, estrogen receptor, progesterone receptor and HER2 whereas DCR2 protein expression significantly correlated with tumour grade, hormone receptors status and HER2 (p<0.05 respectively). P53 overexpression correlated with increased risk of relapse (p = 0.002) specifically in patients who did not receive hormone therapy (p = 0.005) or chemotherapy (p<0.0001). The combination of P53+/P16+ is significantly correlated with poor overall and disease-free survival, whereas a combination of P53+/P14+ is associated with worse outcome in disease-free survival (p<0.05 respectively). P53 overexpression appears to be a univariate predictor of poor disease-free survival. The expression profiles of DEC1 and DCR2 do not appear to correlate with patient survival outcomes. The combination of P53 with P16, rather P53 expression alone, appears to provide more useful clinical information on patient survival outcomes in breast cancer

    Endocrine Resistance in Breast Cancer: The Role of Estrogen Receptor Stability

    Get PDF
    Therapy of hormone receptor positive breast cancer (BCa) generally targets estrogen receptor (ER) function and signaling by reducing estrogen production or by blocking its interaction with the ER. Despite good long-term responses, resistance to treatment remains a significant issue, with approximately 40% of BCa patients developing resistance to ET. Mutations in the gene encoding ERα, ESR1, have been identified in BCa patients and are implicated as drivers of resistance and disease recurrence. Understanding the molecular consequences of these mutations on ER protein levels and its activity, which is tightly regulated, is vital. ER activity is in part controlled via its short protein half-life and therefore changes to its stability, either through mutations or alterations in pathways involved in protein stability, may play a role in therapy resistance. Understanding these connections and how ESR1 alterations could affect protein stability may identify novel biomarkers of resistance. This review explores the current reported data regarding posttranslational modifications (PTMs) of the ER and the potential impact of known resistance associated ESR1 mutations on ER regulation by affecting these PTMs in the context of ET resistance

    Comparison of Methodologies to Detect Low Levels of Hemolysis in Serum for Accurate Assessment of Serum microRNAs

    No full text
    <div><p>microRNAs have emerged as powerful regulators of many biological processes, and their expression in many cancer tissues has been shown to correlate with clinical parameters such as cancer type and prognosis. Present in a variety of biological fluids, microRNAs have been described as a ‘gold mine’ of potential noninvasive biomarkers. Release of microRNA content of blood cells upon hemolysis dramatically alters the microRNA profile in blood, potentially affecting levels of a significant number of proposed biomarker microRNAs and, consequently, accuracy of serum or plasma-based tests. Several methods to detect low levels of hemolysis have been proposed; however, a direct comparison assessing their sensitivities is currently lacking. In this study, we evaluated the sensitivities of four methods to detect hemolysis in serum (listed in the order of sensitivity): measurement of hemoglobin using a Coulter® AcT diff™ Analyzer, visual inspection, the absorbance of hemoglobin measured by spectrophotometry at 414 nm and the ratio of red blood cell-enriched miR-451a to the reference microRNA miR-23a-3p. The miR ratio detected hemolysis down to approximately 0.001%, whereas the Coulter® AcT diff™ Analyzer was unable to detect hemolysis lower than 1%. The spectrophotometric method could detect down to 0.004% hemolysis, and correlated with the miR ratio. Analysis of hemolysis in a cohort of 86 serum samples from cancer patients and healthy controls showed that 31 of 86 (36%) were predicted by the miR ratio to be hemolyzed, whereas only 8 of these samples (9%) showed visible pink discoloration. Using receiver operator characteristic (ROC) analyses, we identified absorbance cutoffs of 0.072 and 0.3 that could identify samples with low and high levels of hemolysis, respectively. Overall, this study will assist researchers in the selection of appropriate methodologies to test for hemolysis in serum samples prior to quantifying expression of microRNAs.</p></div

    Assessment of performance of the spectrophotometric absorbance of hemoglobin at 414 nm for predicting the miR ratio.

    No full text
    <p>Assessment of performance of the spectrophotometric absorbance of hemoglobin at 414 nm for predicting the miR ratio.</p
    corecore