32 research outputs found

    Analyse des statistiques imparfaites (évolution démographique des pays francophones d'Afrique centrale)

    No full text
    BORDEAUX4-BU Droit-Pessac (335222102) / SudocPARIS-INED-Documentation (751202301) / SudocSudocFranceF

    Intra-lineage microevolution of Wolbachia leads to the emergence of new cytoplasmic incompatibility patterns.

    No full text
    Mosquitoes of the Culex pipiens complex are worldwide vectors of arbovirus, filarial nematodes, and avian malaria agents. In these hosts, the endosymbiotic bacteria Wolbachia induce cytoplasmic incompatibility (CI), i.e., reduced embryo viability in so-called incompatible crosses. Wolbachia infecting Culex pipiens (wPip) cause CI patterns of unparalleled complexity, associated with the amplification and diversification of cidA and cidB genes, with up to 6 different gene copies described in a single wPip genome. In wPip, CI is thought to function as a toxin-antidote (TA) system where compatibility relies on having the right antidotes (CidA) in the female to bind and neutralize the male's toxins (CidB). By repeating crosses between Culex isofemale lines over a 17 years period, we documented the emergence of a new compatibility type in real time and linked it to a change in cid genes genotype. We showed that loss of specific cidA gene copies in some wPip genomes results in a loss of compatibility. More precisely, we found that this lost antidote had an original sequence at its binding interface, corresponding to the original sequence at the toxin's binding interface. We showed that these original cid variants are recombinant, supporting a role for recombination rather than point mutations in rapid CI evolution. These results strongly support the TA model in natura, adding to all previous data acquired with transgenes expression

    Identification and characterization of t

    No full text

    Nanopore sequencing of PCR products enables multicopy gene family reconstruction

    No full text
    International audienceThe importance of gene amplifications in evolution is more and more recognized. Yet, tools to study multi-copy gene families are still scarce, and many such families are overlooked using common sequencing methods. Haplotype reconstruction is even harder for polymorphic multi-copy gene families. Here, we show that all variants (or haplotypes) of a multi-copy gene family present in a single genome, can be obtained using Oxford Nanopore Technologies sequencing of PCR products, followed by steps of mapping, SNP calling and haplotyping. As a proof of concept, we acquired the sequences of highly similar variants of the cidA and cidB genes present in the genome of the Wolbachia wPip, a bacterium infecting Culex pipiens mosquitoes. Our method relies on a wide database of cid genes, previously acquired by cloning and Sanger sequencing. We addressed problems commonly faced when using mapping approaches for multi-copy gene families with highly similar variants. In addition, we confirmed that PCR amplification causes frequent chimeras which have to be carefully considered when working on families of recombinant genes. We tested the robustness of the method using a combination of bioinformatics (read simulations) and molecular biology approaches (sequence acquisitions through cloning and Sanger sequencing, specific PCRs and digital droplet PCR). When different haplotypes present within a single genome cannot be reconstructed from short reads sequencing, this pipeline confers a high throughput acquisition, gives reliable results as well as insights of the relative copy numbers of the different variants

    First report of natural Wolbachia infection in wild Anopheles funestus population in Senegal

    No full text
    Abstract Background Until very recently, Anopheles were considered naturally unable to host Wolbachia, an intracellular bacterium regarded as a potential biological control tool. Their detection in field populations of Anopheles gambiae sensu lato, suggests that they may also be present in many more anopheline species than previously thought. Results Here, is reported the first discovery of natural Wolbachia infections in Anopheles funestus populations from Senegal, the second main malaria vector in Africa. Molecular phylogeny analysis based on the 16S rRNA gene revealed at least two Wolbachia genotypes which were named wAnfu-A and wAnfu-B, according to their close relatedness to the A and B supergroups. Furthermore, both wAnfu genotypes displayed high proximity with wAnga sequences previously described from the An. gambiae complex, with only few nucleotide differences. However, the low prevalence of infection, together with the difficulties encountered for detection, whatever method used, highlights the need to develop an effective and sensitive Wolbachia screening method dedicated to anopheline. Conclusions The discovery of natural Wolbachia infection in An. funestus, another major malaria vector, may overcome the main limitation of using a Wolbachia-based approach to control malaria through population suppression and/or replacement

    Dynamic of resistance alleles of two major insecticide targets in Anopheles gambiae (s.l.) populations from Benin, West Africa

    No full text
    International audienceBackground: Insecticide resistance is a growing concern for malaria control and vector control effectiveness relies on assessing it distribution and understanding its evolution. Methods: We assessed resistance levels and the frequencies of two major target-site mutations, L1014F-VGSC and G119S-ace-1, conferring resistance to pyrethroids (PYRs) and carbamates/organophosphates (CXs/OPs) insecticides. These data were compared to those acquired between 2006 and 2010 to follow resistance evolutionary trends over ten years. Results: We report the results of a 3-year survey (2013-2015) of insecticide resistance in 13 localities across the whole country of Benin. Permethrin (PYR) resistance was found in all populations tested, L1014F-VGSC being almost fixed everywhere, while bendiocarb resistance was limited to a few localities, G119S-ace-1 remaining rare, with very limited variations during surveyed period. Interestingly, we found no effect of the type of insecticide pressure on the dynamics of these mutations. Conclusions: These results confirm both the high prevalence of PYR resistance and the potential of CXs/OPs as short-to medium-term alternatives in Benin. They also underline the need for regular resistance monitoring and informed management in their usage, as the G119S-ace-1 mutation is already present in Benin and surrounding countries. Their unwise usage would rapidly lead to its spread, which would jeopardize PYR-resistant Anopheles control

    Population structure of Wolbachia and cytoplasmic introgression in a complex of mosquito species

    Get PDF
    International audienceThe maternally inherited bacterium Wolbachia often acts as a subtle parasite that manipulates insect reproduction, resulting potentially in reproductive isolation between host populations. Whilst distinct Wolbachia strains are documented in a group of evolutionarily closely related mosquitoes known as the Culex pipiens complex, their impact on mosquito population genetics remains unclear. To this aim, we developed a PCR-RFLP test that discriminates the five known Wolbachia groups found in this host complex. We further examined the Wolbachia genetic diversity, the variability in the coinherited host mitochondria and their partitioning among members of the Cx. pipiens complex, in order to assess the impact of Wolbachia on host population structure

    Data from: The evolutionary fate of heterogeneous gene duplications: a precarious overdominant equilibrium between environment, sublethality and complementation.

    No full text
    Gene duplications occur at a high rate. Although most appear detrimental, some homogeneous duplications (identical gene copies) can be selected for beneficial increase in produced proteins. Heterogeneous duplications, which combine divergent alleles of a single locus, are seldom studied due to the paucity of empirical data. We investigated their role in an ongoing adaptive process at the ace-1 locus in Culex pipiens mosquitoes. We assessed the worldwide diversity of the ace-1 alleles (single-copy, susceptible S and insecticide-resistant R, and duplicated D that pair one S and one R copy), analyzed their phylogeography, and measured their fitness to understand their early dynamics using population genetics models. It provides a coherent and comprehensive evolutionary scenario. We show that D alleles are present in most resistant populations, and display a higher diversity than R alleles (27 vs. 4). Most appear to result from independent unequal crossing-overs between local single-copy alleles, suggesting a recurrent process. Most duplicated alleles have a limited geographic distribution, probably resulting from their homozygous sublethality (HS phenotype). In addition, heterozygotes carrying different HS D alleles showed complementation, indicating different recessive lethal mutations. Due to mosaic insecticide control practices, balancing selection (overdominance) plays a key role in the early dynamics heterogeneous duplicated alleles; it also favors a high local polymorphism of HS D alleles in natural populations (overdominance reinforced by complementation). Overall our study shows that the evolutionary fate of heterogeneous duplications (and their long-term role) depends on finely balanced selective pressures due to the environment and to their genomic structure

    Despite structural identity, ace-1 heterogenous duplication resistance alleles are quite diverse in Anopheles mosquitoes

    No full text
    International audienceAnopheles gambiae s.l . has been the target of intense insecticide treatment since the mid-20th century to try and control malaria. A substitution in the ace-1 locus has been rapidly selected for, allowing resistance to organophosphate and carbamate insecticides. Since then, two types of duplication of the ace-1 locus have been found in An. gambiae s.l . populations: homogeneous duplications that are composed of several resistance copies, or heterogeneous duplications that contain both resistance and susceptible copies. The substitution induces a trade-off between resistance in the presence of insecticides and disadvantages in their absence: the heterogeneous duplications allow the fixation of the intermediate heterozygote phenotype. So far, a single heterogeneous duplication has been described in An. gambiae s.l . populations (in contrast with the multiple duplicated alleles found in Culex pipiens mosquitoes). We used a new approach, combining long and short-read sequencing with Sanger sequencing to precisely identify and describe at least nine different heterogeneous duplications, in two populations of An. gambiae s.l . We show that these alleles share the same structure as the previously identified heterogeneous and homogeneous duplications, namely 203-kb tandem amplifications with conserved breakpoints. Our study sheds new light on the origin and maintenance of these alleles in An. gambiae s.l . populations, and their role in mosquito adaptation
    corecore