116 research outputs found

    Inhibition of HSP90 distinctively modulates the global phosphoproteome of Leishmania mexicana developmental stages

    Get PDF
    Heat shock protein 90 (HSP90) is an evolutionarily conserved chaperone protein that plays a central role in the folding and maturation of a large array of client proteins. In the unicellular parasite Leishmania, the etiological agent of the neglected tropical disease leishmaniasis, treatment with HSP90 inhibitors leads to differentiation from promastigote to amastigote stage, resembling the effects of established environmental triggers, low pH and heat shock. This indicates a crucial role for HSP90 in the life cycle control of Leishmania. However, the underlying molecular mechanisms remain unknown. Using a combination of treatment with the classical HSP90 inhibitor tanespimycin, phosphoproteome enrichment, and tandem mass tag (TMT) labeling-based quantitative proteomic mass spectrometry (MS), we systematically characterized the perturbing effect of HSP90 inhibition on the global phosphoproteome of Leishmania mexicana across its life cycle stages and showed that the HSP90 inhibition causes substantially distinct molecular effects in promastigote and amastigote forms.While phosphorylation of HSP90 and its co-chaperone HSP70 was decreased in amastigote, the opposite effect was observed in promastigotes. Our results showed that kinase activity and microtubule motor activity are highly represented in the negatively affected phosphoproteins of the promastigotes, whereas ribosomal proteins, protein folding, and proton channel activity are preferentially enriched in the perturbed amastigote phosphoproteome. Additionally, cross-comparison of our results with HSP90 inhibition-affected RNA-binding proteins showed that RNA helicase domains were distinctively enriched among the upregulated amastigote phosphoproteins. In addition to providing robust identification and quantification of 1,833 phosphorylated proteins across three life cycle stages of L. mexicana, this study reveals the dramatically different ways the HSP90 inhibition stress modulates the phosphoproteome of the pathogenic amastigote and provides in-depth insight into the scope of selective molecular targeting in the therapeutically relevant amastigote stage

    Synthesis and vectorial functionalisation of pyrazolo[3,4- c ]pyridines

    Get PDF
    Heterocycles are a cornerstone of fragment-based drug discovery (FBDD) due to their prevalence in biologically active compounds. However, novel heterocyclic fragments are only valuable if they can be suitably elaborated to compliment a chosen target protein. Here we describe the synthesis of 5-halo-1H-pyrazolo[3,4-c]pyridine scaffolds and demonstrate how these compounds can be selectively elaborated along multiple growth-vectors. Specifically, N-1 and N-2 are accessed through protection-group and N-alkylation reactions; C-3 through tandem borylation and Suzuki–Miyaura cross-coupling reactions; C-5 through Pd-catalysed Buchwald–Hartwig amination; and C-7 through selective metalation with TMPMgCl.LiCl followed by reaction with electrophiles or transmetalation to ZnCl2 and Negishi cross-coupling. Linking multiple functionalisation strategies emulates a hit-to-lead pathway and demonstrates the utility of pyrazolo[3,4-c]pyridines to FBDD

    Applications of Transition Metal-Catalyzed ortho-Fluorine-Directed C–H Functionalization of (Poly)fluoroarenes in Organic Synthesis

    Get PDF
    The synthesis of organic compounds efficiently via fewer steps but in higher yields is desirable as this reduces energy and reagent use, waste production, and thus environmental impact as well as cost. The reactivity of C–H bonds ortho to fluorine substituents in (poly)fluoroarenes with metal centers is enhanced relative to meta and para positions. Thus, direct C–H functionalization of (poly)fluoroarenes without prefunctionalization is becoming a significant area of research in organic chemistry. Novel and selective methodologies to functionalize (poly)fluorinated arenes by taking advantage of the reactivity of C–H bonds ortho to C–F bonds are continuously being developed. This review summarizes the reasons for the enhanced reactivity and the consequent developments in the synthesis of valuable (poly)fluoroarene-containing organic compounds

    Iridium‐Catalysed C−H Borylation of Fluoroarenes: Insights into the Balance between Steric and Electronic Control of Regioselectivity

    Get PDF
    The iridium catalysed C−H borylation of polyfluorinated arenes and heteroarenes occurs rapidly and efficiently. As with other borylation reactions, whilst steric parameters dominate, an underlying electronic influence on reaction selectivity can be observed. Notably borylation regioselectivity in fluorinated (hetero)arenes is determined by purely electronic effects except for ortho-borylation between two fluorine atoms where steric effects of fluorine substituents become apparent. Borylation at the para position with respect to fluorine is disfavoured whereas a strong electronic preference for borylation para to the azinyl nitrogen of pyridine is observed. When these features co-operate high selectivity can be expected. For these reactions, computations based on transition state, rather than intermediate, energies in iridium geometries showed excellent agreement between predicted and observed selectivities

    Assessing Dose-Exposure-Response Relationships of Miltefosine in Adults and Children using Physiologically-Based Pharmacokinetic Modeling Approach.

    Get PDF
    Miltefosine is the first and only oral medication to be successfully utilized as an antileishmanial agent. However, the drug is associated with differences in exposure patterns and cure rates among different population groups e.g. ethnicity and age (i.e., children v adults) in clinical trials. In this work, mechanistic population physiologically-based pharmacokinetic (PBPK) models have been developed to study the dose-exposure-response relationship of miltefosine in in silico clinical trials and evaluate the differences in population groups, particularly children and adults. The Simcyp population pharmacokinetics platform was employed to predict miltefosine exposure in plasma and peripheral blood mononuclear cells (PBMCs) in a virtual population under different dosing regimens. The cure rate of a simulation was based on the percentage of number of the individual virtual subjects with AUC  > 535 ”g⋅day/mL in the virtual population. It is shown that both adult and paediatric PBPK models of miltefosine can be developed to predict the PK data of the clinical trials accurately. There was no significant difference in the predicted dose-exposure-response of the miltefosine treatment for different simulated ethnicities under the same dose regime and the dose-selection strategies determined the clinical outcome of the miltefosine treatment. A lower cure rate of the miltefosine treatment in paediatrics was predicted because a lower exposure of miltefosine was simulated in virtual paediatric in comparison with adult virtual populations when they received the same dose of the treatment. The mechanistic PBPK model suggested that the higher fraction of unbound miltefosine in plasma was responsible for a higher probability of failure in paediatrics because of the difference in the distribution of plasma proteins between adults and paediatrics. The developed PBPK models could be used to determine an optimal miltefosine dose regime in future clinical trials. [Abstract copyright: © 2023. The Author(s).

    Disruption of the inositol phosphorylceramide synthase gene affects Trypanosoma cruzi differentiation and infection capacity

    Get PDF
    Sphingolipids (SLs) are essential components of all eukaryotic cellular membranes. In fungi, plants and many protozoa, the primary SL is inositol-phosphorylceramide (IPC). Trypanosoma cruzi is a protozoan parasite that causes Chagas disease (CD), a chronic illness for which no vaccines or effective treatments are available. IPC synthase (IPCS) has been considered an ideal target enzyme for drug development because phosphoinositol-containing SL is absent in mammalian cells and the enzyme activity has been described in all parasite forms of T. cruzi. Furthermore, IPCS is an integral membrane protein conserved amongst other kinetoplastids, including Leishmania major, for which specific inhibitors have been identified. Using a CRISPR-Cas9 protocol, we generated T. cruzi knockout (KO) mutants in which both alleles of the IPCS gene were disrupted. We demonstrated that the lack of IPCS activity does not affect epimastigote proliferation or its susceptibility to compounds that have been identified as inhibitors of the L. major IPCS. However, disruption of the T. cruzi IPCS gene negatively affected epimastigote differentiation into metacyclic trypomastigotes as well as proliferation of intracellular amastigotes and differentiation of amastigotes into tissue culture-derived trypomastigotes. In accordance with previous studies suggesting that IPC is a membrane component essential for parasite survival in the mammalian host, we showed that T. cruzi IPCS null mutants are unable to establish an infection in vivo, even in immune deficient mice

    Solar System Objects Observed in the SDSS Commissioning Data

    Full text link
    We discuss measurements of the properties of about 10,000 asteroids detected in 500 deg2 of sky in the Sloan Digital Sky Survey (SDSS) commissioning data. The moving objects are detected in the magnitude range 14 < r < 21.5, with a baseline of 5 minutes. Extensive tests show that the sample is at least 98% complete, with the contamination rate of less than 3%. We find that the size distribution of asteroids resembles a broken power-law, independent of the heliocentric distance: D^{-2.3} for 0.4 km < D < 5 km, and D^{-4} for 5 km < D < 40 km. As a consequence of this break, the number of asteroids with r < 21.5 is ten times smaller than predicted by extrapolating the power-law relation observed for brighter asteroids (r < 18). The observed counts imply that there are about 530,000 objects with D>1 km in the asteroid belt, or about four times less than previous estimates. The distribution of main belt asteroids in the 4-dimensional SDSS color space is bimodal, and the two groups can be associated with S (rocky) and C (carbonaceous) asteroids. A strong bimodality is also seen in the heliocentric distribution of asteroids and suggests the existence of two distinct belts: the inner rocky belt, about 1 AU wide (FWHM) and centered at R~2.8 AU, and the outer carbonaceous belt, about 0.5 AU wide and centered at R~3.2 AU. The colors of Hungarias, Mars crossers, and near-Earth objects are more similar to the C-type than to S-type asteroids, suggesting that they originate in the outer belt. (abridged).Comment: 89 pages, 31 figures, submitted to A

    Mapping the geographical distribution of podoconiosis in Cameroon using parasitological, serological, and clinical evidence to exclude other causes of lymphedema

    Get PDF
    Background Podoconiosis is a non-filarial elephantiasis, which causes massive swelling of the lower legs. It was identified as a neglected tropical disease by WHO in 2011. Understanding of the geographical distribution of the disease is incomplete. As part of a global mapping of podoconiosis, this study was conducted in Cameroon to map the distribution of the disease. This mapping work will help to generate data on the geographical distribution of podoconiosis in Cameroon and contribute to the global atlas of podoconiosis. Methods We used a multi‐stage sampling design with stratification of the country by environmental risk of podoconiosis. We sampled 76 villages from 40 health districts from the ten Regions of Cameroon. All individuals of 15-years old or older in the village were surveyed house-to-house and screened for lymphedema. A clinical algorithm was used to reliably diagnose podoconiosis, excluding filarial-associated lymphedema. Individuals with lymphoedema were tested for circulating Wuchereria bancrofti antigen and specific IgG4 in the field using the Alere Filariasis Test Strips (FTS) test and the Standard Diagnostics (SD) BIOLINE lymphatic filariasis IgG4 test (Wb123) respectively, in addition to thick blood films. Presence of DNA specific to W.bancrofti was checked on night blood using a qPCR technique. Principal Findings Overall, 10,178 individuals from 4,603 households participated in the study. In total, 83 individuals with lymphedema were identified. Of the 83 individuals with lymphedema, two were found to be FTS positive and all were negative using the Wb123 test. No microfilaria of W. bancrofti were found in the night blood of any individual with clinical lymphedema. None were found to be positive for W. bancrofti using qPCR. Of the two FTS positive cases, one was positive for Mansonella perstans DNA, while the other harbored Loa loa microfilaria. Overall, 52 people with podoconiosis were identified after applying the clinical algorithm. The overall prevalence of podoconiosis was found to be 0.5% (95% [confidence interval] CI; 0.4-0.7). At least one case of podoconiosis was found in every region of Cameroon except the two surveyed villages in Adamawa. Of the 40 health districts surveyed, 17 districts had no cases of podoconiosis; in 15 districts, mean prevalence was between 0.2% and 1.0%; and in the remaining eight, mean prevalence was between 1.2% and 2.7%. Conclusions Our investigation has demonstrated low prevalence but almost nationwide distribution of podoconiosis in Cameroon. Designing a podoconiosis control program is a vital next step. A health system response to the burden of podoconiosis is important, through case surveillance and morbidity management services

    The RIP140 Gene Is a Transcriptional Target of E2F1

    Get PDF
    RIP140 is a transcriptional coregulator involved in energy homeostasis and ovulation which is controlled at the transcriptional level by several nuclear receptors. We demonstrate here that RIP140 is a novel target gene of the E2F1 transcription factor. Bioinformatics analysis, gel shift assay, and chromatin immunoprecipitation demonstrate that the RIP140 promoter contains bona fide E2F response elements. In transiently transfected MCF-7 breast cancer cells, the RIP140 promoter is transactivated by overexpression of E2F1/DP1. Interestingly, RIP140 mRNA is finely regulated during cell cycle progression (5-fold increase at the G1/S and G2/M transitions). The positive regulation by E2F1 requires sequences located in the proximal region of the promoter (−73/+167), involves Sp1 transcription factors, and undergoes a negative feedback control by RIP140. Finally, we show that E2F1 participates in the induction of RIP140 expression during adipocyte differentiation. Altogether, this work identifies the RIP140 gene as a new transcriptional target of E2F1 which may explain some of the effect of E2F1 in both cancer and metabolic diseases
    • 

    corecore