64 research outputs found

    Antitumour responses induced by a cell-based Reovirus vaccine in murine lung and melanoma models

    Get PDF
    Background: The ever increasing knowledge in the areas of cell biology, the immune system and the mechanisms of cancer are allowing a new phase of immunotherapy to develop. The aim of cancer vaccination is to activate the host immune system and some success has been observed particularly in the use of the BCG vaccine for bladder cancer as an immunostimulant. Reovirus, an orphan virus, has proven itself as an oncolytic virus in vitro and in vivo. Over 80 % of tumour cell lines have been found to be susceptible to Reovirus infection and it is currently in phase III clinical trials. It has been shown to induce immune responses to tumours with very low toxicities. Methods: In this study, Reovirus was examined in two main approaches in vivo, in mice, using the melanoma B16F10 and Lewis Lung Carcinoma (LLC) models. Initially, mice were treated intratumourally (IT) with Reovirus and the immune responses determined by cytokine analysis. Mice were also vaccinated using a cell-based Reovirus vaccine and subsequently exposed to a tumourigenic dose of cells (B16F10 or LLC). Using the same cell-based Reovirus vaccine, established tumours were treated and subsequent immune responses and virus retrieval investigated. Results: Upregulation of several cytokines was observed following treatment and replication-competent virus was also retrieved from treated tumours. Varying levels of cytokine upregulation were observed and no replication-competent virus was retrieved in vaccine-treated mice. Prolongation of survival and delayed tumour growth were observed in all models and an immune response to Reovirus, either using Reovirus alone or a cell-based vaccine was also observed in all mice. Conclusion: This study provides evidence of immune response to tumours using a cell-based Reovirus vaccine in both tumour models investigated, B16F10 and LLC, cytokine induction was observed with prolongation of survival in almost all cases which may suggest a new method for using Reovirus in the clinic

    Combination of electroporation delivered metabolic modulators with low-dose chemotherapy in osteosarcoma

    Get PDF
    Background: Osteosarcoma accounts for roughly 60% of all malignant bone tumors in children and young adults. The five-year survival rate for localized tumors after surgery and chemotherapy is approximately 70% whilst it drastically reduces to 15–30% in metastatic cases. Metabolic modulation is known to increase sensitivity of cancers to chemotherapy. A novel treatment strategy in Osteosarcoma is needed to battle this devastating malady. Results: Electroporation-delivered metabolic modulators were more effective in halting the cell cycle of Osteosarcoma cells and this negatively affects their ability to recover and proliferate, as shown in colony formation assays. Electroporation-delivered metabolic modulators increase the sensitivity of Osteosarcoma cells to chemotherapy and this combination reduces their survivability. Conclusion: This novel treatment approach highlights the efficacy of electroporation in the delivery of metabolic modulators in Osteosarcoma cells, and increased sensitivity to chemotherapy allowing for a lower dose to be therapeutic. Methods: Metabolic modulations of two Osteosarcoma cell lines were performed with clinically available modulators delivered using electroporation, and its combination with low-dose Cisplatin. The effects of Dicholoroacetic acid, 2-Deoxy-D-glucose and Metformin on cell cycle and recovery of Osteosarcoma cells were assessed. Their sensitivity to chemotherapy was also assessed when treated in combination with electroporation-delivered metabolic modulators

    Expressional changes in stemness markers post electrochemotherapy in pancreatic cancer cells

    Get PDF
    Pancreatic cancer is one of the most lethal cancers with high metastatic potential and strong chemoresistance. The capability of a tumor to grow and propagate is dependent on a small subset of cells within a tumor, termed cancer stem cells. Cancer stem cells exhibit great tumorigenicity and are closely correlated with drug resistance and tumor recurrence. The aim of our study was to illustrate electrochemotherapy as an effective treatment for pancreatic cancer along with the expression change in stemness genes (Nanog, Sox2 and Oct3/4) in pancreatic cancer cells post electrochemotherapy with bleomycin, cisplatin and oxaliplatin. Our results showed the enhanced expression of Nanog and decreased expression level of Oct3/4 after electrochemotherpy. We thus propose that these stemness markerS may have important roles in the initiation and/or recurrence of pancreatic cancer, and consequently may serve as important molecular diagnostics and/or therapeutic targets for the development of novel treatment strategies in pancreatic cancer patients. In conclusion, targeting these stemness factors could potentially improve electrochemotherapy as a treatment and preventing recurrence

    The Pentose Phosphate Pathway Dynamics in Cancer and Its Dependency on Intracellular pH

    Get PDF
    The Pentose Phosphate Pathway (PPP) is one of the key metabolic pathways occurring in living cells to produce energy and maintain cellular homeostasis. Cancer cells have higher cytoplasmic utilization of glucose (glycolysis), even in the presence of oxygen; this is known as the “Warburg Effect”. However, cytoplasmic glucose utilization can also occur in cancer through the PPP. This pathway contributes to cancer cells by operating in many different ways: (i) as a defense mechanism via the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) to prevent apoptosis, (ii) as a provision for the maintenance of energy by intermediate glycolysis, (iii) by increasing genomic material to the cellular pool of nucleic acid bases, (iv) by promoting survival through increasing glycolysis, and so increasing acid production, and (v) by inducing cellular proliferation by the synthesis of nucleic acid, fatty acid, and amino acid. Each step of the PPP can be upregulated in some types of cancer but not in others. An interesting aspect of this metabolic pathway is the shared regulation of the glycolytic and PPP pathways by intracellular pH (pHi). Indeed, as with glycolysis, the optimum activity of the enzymes driving the PPP occurs at an alkaline pHi, which is compatible with the cytoplasmic pH of cancer cells. Here, we outline each step of the PPP and discuss its possible correlation with cancer

    Irish cardiac society - Proceedings of annual general meeting held 20th & 21st November 1992 in Dublin Castle

    Get PDF

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Professional Development, Reflection and Enquiry

    No full text
    corecore