3,232 research outputs found
Accelerating Asymptotically Exact MCMC for Computationally Intensive Models via Local Approximations
We construct a new framework for accelerating Markov chain Monte Carlo in
posterior sampling problems where standard methods are limited by the
computational cost of the likelihood, or of numerical models embedded therein.
Our approach introduces local approximations of these models into the
Metropolis-Hastings kernel, borrowing ideas from deterministic approximation
theory, optimization, and experimental design. Previous efforts at integrating
approximate models into inference typically sacrifice either the sampler's
exactness or efficiency; our work seeks to address these limitations by
exploiting useful convergence characteristics of local approximations. We prove
the ergodicity of our approximate Markov chain, showing that it samples
asymptotically from the \emph{exact} posterior distribution of interest. We
describe variations of the algorithm that employ either local polynomial
approximations or local Gaussian process regressors. Our theoretical results
reinforce the key observation underlying this paper: when the likelihood has
some \emph{local} regularity, the number of model evaluations per MCMC step can
be greatly reduced without biasing the Monte Carlo average. Numerical
experiments demonstrate multiple order-of-magnitude reductions in the number of
forward model evaluations used in representative ODE and PDE inference
problems, with both synthetic and real data.Comment: A major update of the theory and example
“Supply and demand trends for fertilizer in Zimbabwe: 1930 to date”: Key drivers and lessons learnt
The fertilizer sector in Zimbabwe has evolved over the years in response to different policy changes based on the government’s priorities on agricultural development. The industry grew from the 1930s that targeted primarily large scale commercial farmers, through the liberalization period of the mid 1990s, and recent changes that have introduced controls on the marketing system. Since 2000, following the fast track land reform program, Zimbabwe has faced food insecurity challenges that have been exacerbated by the political and economic crises. This prompted the government to adopt policies that have reduced private sector interests in fertilizer supply. In this situation where explicit fertilizer markets have been absent, relief programs have been leading in facilitating deliveries of fertilizers to poorer smallholder farmers located even in remote areas. The supply of fertilizers in Zimbabwe has been driven by government policy, finance and infrastructure while the demand has primarily been a function of farmer’s capacity to acquire fertilizers, availability of water and farmers knowledge of fertilizer use. There is need for a policy shift that promotes a competitive fertilizer marketing to support a broader range of farmers in Zimbabwe leading to agricultural productivity growth. Investment in infrastructure is critical to reduce marketing costs and to boost fertilizer demand; policies that strengthen farmer’s capacity to acquire fertilizers and increase their knowledge on fertilizer use complemented by technologies that promote water use efficiencies are needed.Fertilizer, supply and demand, policy reform, consumption trends, Crop Production/Industries,
Single-Frequency GPS Relative Navigation in a High Ionosphere Orbital Environment
The Global Positioning System (GPS) provides a convenient source for space vehicle relative navigation measurements, especially for low Earth orbit formation flying and autonomous rendezvous mission concepts. For single-frequency GPS receivers, ionospheric path delay can be a significant error source if not properly mitigated. In particular, ionospheric effects are known to cause significant radial position error bias and add dramatically to relative state estimation error if the onboard navigation software does not force the use of measurements from common or shared GPS space vehicles. Results from GPS navigation simulations are presented for a pair of space vehicles flying in formation and using GPS pseudorange measurements to perform absolute and relative orbit determination. With careful measurement selection techniques relative state estimation accuracy to less than 20 cm with standard GPS pseudorange processing and less than 10 cm with single-differenced pseudorange processing is shown
Politics of Aedification, Sensation and Ruination at the Brussels Wiertz Museum
This paper seeks to explain why party candidates and their party leadership have congruent policy positions or not. Despite its importance as a way through which parties are able to behave as a unitary actor, this congruence has never been studied as a dependent variable. We seek to fill this void in the literature. Our results suggest that leadership-candidate congruence comes about through two mechanisms: selection and learning. With selection, the party leadership aims to get those candidates elected whose policy preferences are congruent with the party line. Learning occurs through the process of socialization in which candidates assume the views of the party they work and candidate for as their own under. This happens under the pressure of cognitive dissonance. If a candidate learns about the position of the leadership and notices that they are incongruent, they may feel discomfort and change their opinion to be congruent with the party
Flexible Execution of Plans with Choice
Dynamic plan execution strategies allow an autonomous
agent to respond to uncertainties while improving
robustness and reducing the need for an overly
conservative plan. Executives have improved this robustness
by expanding the types of choices made dynamically,
such as selecting alternate methods. However,
in methods to date, these additional choices introduce
substantial run-time latency. This paper presents a
novel system called Drake that makes steps towards executing
an expanded set of choices dynamically without
significant latency.
Drake frames a plan as a Disjunctive Temporal Problem
and executes it with a fast dynamic scheduling algorithm.
Prior work demonstrated an efficient technique
for dynamic execution of one special type of DTPs by
using an off-line compilation step to find the possible
consistent choices and compactly record the differences
between them. Drake extends this work to handle a
more general set of choices by recording the minimal
differences between the solutions which are required at
run-time. On randomly generated structured plans with
choice, we show a reduction in the size of the solution
set of over two orders of magnitude, compared to prior
art
Drug resistance mediating Plasmodium falciparum polymorphisms and clinical presentations of parasitaemic children in Uganda.
BackgroundPlasmodium falciparum genetic polymorphisms that mediate altered drug sensitivity may impact upon virulence. In a cross-sectional study, Ugandan children with infections mutant at pfcrt K76T, pfmdr1 N86Y, or pfmdr1 D1246Y had about one-fourth the odds of symptomatic malaria compared to those with infections with wild type (WT) sequences. However, results may have been confounded by greater likelihood in those with symptomatic disease of higher density mixed infections and/or recent prior treatment that selected for WT alleles.MethodsPolymorphisms in samples from paired episodes of asymptomatic and symptomatic parasitaemia in 114 subjects aged 4-11 years were followed longitudinally in Tororo District, Uganda. Paired episodes occurred within 3-12 months of each other and had no treatment for malaria in the prior 60 days. The prevalence of WT, mixed, and mutant alleles was determined using multiplex ligase detection reaction-fluorescent microsphere assays.ResultsConsidering paired episodes in the same subject, the odds of symptomatic malaria were lower for infections with mutant compared to WT or mixed sequence at N86Y (OR 0.26, 95% CI 0.09-0.79, p = 0.018), but not K76T or D1246Y. However, symptomatic episodes (which had higher densities) were more likely than asymptomatic to be mixed (for N86Y OR 2.0, 95% CI 1.04-4.0, p = 0.036). Excluding mixed infections, the odds of symptomatic malaria were lower for infections with mutant compared to WT sequence at N86Y (OR 0.33, 95% CI 0.11-0.98, p = 0.046), but not the other alleles. However, if mixed genotypes were grouped with mutants in this analysis or assuming that mixed infections consisted of 50% WT and 50% mutant genotypes, the odds of symptomatic infection did not differ between infections that were mutant or WT at the studied alleles.ConclusionsAlthough infections with only the mutant pfmdr1 86Y genotype were associated with symptomatic infection, this association could primarily be explained by greater parasite densities and therefore greater prevalence of mixed infections in symptomatic children. These results indicate limited association between the tested polymorphisms and risk of symptomatic disease and highlight the value of longitudinal studies for assessing associations between parasite factors and clinical outcomes
First direct observation of a nearly ideal graphene band structure
Angle-resolved photoemission and X-ray diffraction experiments show that
multilayer epitaxial graphene grown on the SiC(000-1) surface is a new form of
carbon that is composed of effectively isolated graphene sheets. The unique
rotational stacking of these films cause adjacent graphene layers to
electronically decouple leading to a set of nearly independent linearly
dispersing bands (Dirac cones) at the graphene K-point. Each cone corresponds
to an individual macro-scale graphene sheet in a multilayer stack where
AB-stacked sheets can be considered as low density faults.Comment: 5 pages, 4 figure
- …
