2,397 research outputs found

    Risk Factor Analysis for 30-Day Readmission Rates of Newly Tracheostomized Children

    Get PDF
    Objectives: Pediatric patients undergo tracheostomy for a variety of reasons; however, medical complexity is common among these patients. Although tracheostomy may help to facilitate discharge, these patients may be at increased risk for hospital readmission. The purpose of this study was to evaluate our institutional rate of 30-day readmission for patients discharged with new tracheostomies and to identify risk factors associated with readmission. Study Design: A retrospective cohort study was conducted for all pediatric patients ages 0-18 years with new tracheostomies at our institution over a 36-month period. Methods: A chart review was performed for all newly tracheostomizedchildren from 2013 to 2016. We investigated documented readmissions within 30 days of discharge, reasons for readmission, demographic variables including age and ethnicity, initial discharge disposition, co-morbidities, and socioeconomic status estimated by mean household income by parental zip code. Results: 45 patients were discharged during the study time period. A total of 13 (28.9%) required readmission within 30 days of discharge. Among these 13 patients, the majority (61.5%) were readmitted for lower airway concerns, many (30.8%) were admitted for reasons unrelated to tracheostomy or respiratory concerns, and only one patient (7.7%) was readmitted for a reason related to tracheostomy itself (tracheostomalbreakdown). Age, ethnicity, discharge disposition, co-morbidities, and socioeconomic status were not associated with differences in readmission rates. Patients readmitted within 30 days had a higher number of admissions within the first year. Conclusion: Pediatric patients with new tracheostomies are at high risk for readmission after discharge from initial hospitalization. The readmissions are most likely secondary to underlying medical complexity rather than issues related specifically to the tracheostomy procedure.https://jdc.jefferson.edu/patientsafetyposters/1046/thumbnail.jp

    Dispersion and connectivity estimates along the U.S. west coast from a realistic numerical model

    Get PDF
    Near-surface particle dispersion, larval dispersal and connectivity along the U.S west coast were explored using a realistic numerical model of the California Current System. Seasonal model velocities were qualitatively and quantitatively evaluated using Global Drifter Program data. The model displayed a clear seasonal cycle of eddy energy near the coast with energy maxima southwest of major headlands. Eddy speeds were correlated with drifter-based estimates during summer and fall when compared spatially. Over six million passive, Lagrangian particles were released in the upper 20 m of the water column within 10 km of the California and Oregon coasts and tracked for 7 years. The effect of subgridscale vertical turbulence was parameterized with a random walk model. Resulting trajectories yielded climatological maps of particle dispersion. Particle densities varied with release region, release season and time-since-release. Dispersal distances and coastal connectivity varied with season of release, release location, release depth and pelagic larval duration (PLD). Connectivity was clearly influenced by major geographic features such as the Gulf of the Farallones and Cape Mendocino. Given a moderate (30–60 day) PLD, mean dispersal distances varied from ∼10–230 km, with standard deviations of ∼130–220 km. For release locations from Palos Verdes to Point Sur, the primary direction of dispersal was northward for a moderate PLD, regardless of season. For long PLDs (120–180 day), mean dispersal distances were larger (∼40–440 km), with standard deviations of ∼330–540 km. In winter given a long PLD, dispersal was primarily southward for release locations north of Point Arena. Increasing release depths to 40–60 m altered mean dispersal distances by 50–250 km polewards, but had little effect on standard deviations. Point Conception did not act as a barrier to dispersal for source regions in the Southern California Bight

    Magma ocean evolution of the TRAPPIST-1 planets

    Get PDF
    Funding: P.B. acknowledges a St Leonard’s Interdisciplinary Doctoral Scholarship from the University of St Andrews. L.C. acknowledges support from the DFG Priority Programme SP1833 Grant CA 1795/3. R.B.’s contribution was supported by NASA grant number 80NSSC20K0229 and the NASA Virtual Planetary Laboratory Team through grant number 80NSSC18K0829. Th.H. acknowledges support from the European Research Council under the Horizon 2020 Framework Program via the ERC Advanced Grant Origins 83 24 28.Recent observations of the potentially habitable planets TRAPPIST-1 e, f, and g suggest that they possess large water mass fractions of possibly several tens of weight percent of water, even though the host star's activity should drive rapid atmospheric escape. These processes can photolyze water, generating free oxygen and possibly desiccating the planet. After the planets formed, their mantles were likely completely molten with volatiles dissolving and exsolving from the melt. To understand these planets and prepare for future observations, the magma ocean phase of these worlds must be understood. To simulate these planets, we have combined existing models of stellar evolution, atmospheric escape, tidal heating, radiogenic heating, magma-ocean cooling, planetary radiation, and water-oxygen-iron geochemistry. We present MagmOc, a versatile magma-ocean evolution model, validated against the rocky super-Earth GJ 1132b and early Earth. We simulate the coupled magma-ocean atmospheric evolution of TRAPPIST-1 e, f, and g for a range of tidal and radiogenic heating rates, as well as initial water contents between 1 and 100 Earth oceans. We also reanalyze the structures of these planets and find they have water mass fractions of 0–0.23, 0.01–0.21, and 0.11–0.24 for planets e, f, and g, respectively. Our model does not make a strong prediction about the water and oxygen content of the atmosphere of TRAPPIST-1 e at the time of mantle solidification. In contrast, the model predicts that TRAPPIST-1 f and g would have a thick steam atmosphere with a small amount of oxygen at that stage. For all planets that we investigated, we find that only 3–5% of the initial water will be locked in the mantle after the magma ocean solidified.Publisher PDFPeer reviewe

    UM CASO NA ESCOLA: INIBIÇÃO E PARTICIPAÇÃO DE DEFICIENTES NAS AULAS DE EDUCAÇÃO FÍSICA

    Get PDF
    Durante os últimos anos observou-se um aumento significativo na presença de estudantes com deficiências nas escolas regulares, em parte, devido aos incentivos governamentais. Esse movimento é positivo porque motiva o processo social de inclusão destes indivíduos no meio em que vivem. Entretanto, a partir de observações experienciadas na prática durante estágio observaram-se situações que levaram a formulação de duas grandes perguntas: Como esse processo de inclusão foi elaborado? Será que realmente funciona na prática? Este estudo teve como objetivo questionar a efetiva participação destes alunos nas atividades propostas nas aulas de Educação Física com vistas a apontar soluções que contribuam para o desenvolvimento social. Observando os atores envolvidos no processo foi possível verificar que a situação gerada no momento da inclusão causa medo e indiferença por parte dos colegas, receio e isolamento do estudante, e ainda, gera dúvida e demonstra falta de preparo dos professores para atuar na situação. Entende-se que o problema comum a todos gera inibição para atuar, que por sua vez, leva ao medo, confusão, vergonha, timidez e acanhamento. Para superar este problema em comum, sugerem-se quatro linhas de atuação: 1) Formação específica aos professores; 2) Introduzir jogos adaptados nas aulas; 3) Aulas teóricas com introdução de vídeos e histórias de vida, e 4) Generalizar e evidencar a cooperação. Mostrar que quando ajudamos alguém, estamos nos ajudando também, é um dos valores sociais a serem desenvolvidos, que permite transformar a falsa inclusão em possibilidade real

    The Structure of a Receptor with Two Associating Transmembrane Domains on the Cell Surface: Integrin α\u3csub\u3eIIb\u3c/sub\u3eβ\u3csub\u3e3\u3c/sub\u3e

    Get PDF
    Structures of intact receptors with single-pass transmembrane domains are essential to understand how extracellular and cytoplasmic domains regulate association and signaling through transmembrane domains. A chemical and computational method to determine structures of the membrane regions of such receptors on the cell surface is developed here and validated with glycophorin A. An integrin heterodimer structure reveals association over most of the lengths of the α and β transmembrane domains and shows that the principles governing association of hetero and homo transmembrane dimers differ. A turn at the Gly of the juxtamembrane GFFKR motif caps the α TM helix and brings the two Phe of GFFKR into the α/β interface. A juxtamembrane Lys residue in β also has an important role in the interface. The structure shows how transmembrane association/dissociation regulates integrin signaling. A joint ectodomain and membrane structure shows that substantial flexibility between the extracellular and TM domains is compatible with TM signaling. © 2009 Elsevier Inc. All rights reserved

    Isotopic constraints on lightning as a source of fixed nitrogen in Earth's early biosphere

    Get PDF
    Bioavailable nitrogen is thought to be a requirement for the origin and sustenance of life. Before the onset of biological nitrogen fixation, abiotic pathways to fix atmospheric N2 must have been prominent to provide bioavailable nitrogen to Earth's earliest ecosystems. Lightning has been shown to produce fixed nitrogen as nitrite and nitrate in both modern atmospheres dominated by N2 and O2 and atmospheres dominated by N2 and CO2 analogous to the Archaean Earth. However, a better understanding of the isotopic fingerprints of lightning-generated fixed nitrogen is needed to assess the role of this process on the early Earth. Here, we present results from spark discharge experiments in N2-CO2 and N2-O2 gas mixtures. Our experiments suggest that lightning-driven nitrogen fixation may have been similarly efficient in the Archaean atmosphere, compared to modern times. Measurements of the isotopic ratio {\delta}15N of the discharge-produced nitrite and nitrate in solution show very low values of -6 to -15 permil after equilibration with the gas phase with a calculated endmember composition of -17 permil. These results are much lower than most {\delta}15N values documented from the sedimentary rock record, which supports the development of biological nitrogen fixation earlier than 3.2 Ga. However, some Paleoarchean records (3.7 Ga) may be consistent with lightning-derived nitrogen input, highlighting the potential role of this process for the earliest ecosystems.Comment: Accepted manuscript. Version of record published in Nature Geoscience. 29 pages (main text, methods, supplementary material), 5 figures + 4 supplementary figure

    The infrared imaging spectrograph (IRIS) for TMT: the science case

    Get PDF
    The InfraRed Imaging Spectrograph (IRIS) is a first-light instrument being designed for the Thirty Meter Telescope (TMT). IRIS is a combination of an imager that will cover a 16.4" field of view at the diffraction limit of TMT (4 mas sampling), and an integral field unit spectrograph that will sample objects at 4-50 mas scales. IRIS will open up new areas of observational parameter space, allowing major progress in diverse fields of astronomy. We present the science case and resulting requirements for the performance of IRIS. Ultimately, the spectrograph will enable very well-resolved and sensitive studies of the kinematics and internal chemical abundances of high-redshift galaxies, shedding light on many scenarios for the evolution of galaxies at early times. With unprecedented imaging and spectroscopy of exoplanets, IRIS will allow detailed exploration of a range of planetary systems that are inaccessible with current technology. By revealing details about resolved stellar populations in nearby galaxies, it will directly probe the formation of systems like our own Milky Way. Because it will be possible to directly characterize the stellar initial mass function in many environments and in galaxies outside of the the Milky Way, IRIS will enable a greater understanding of whether stars form differently in diverse conditions. IRIS will reveal detailed kinematics in the centers of low-mass galaxies, allowing a test of black hole formation scenarios. Finally, it will revolutionize the characterization of reionization and the first galaxies to form in the universe.Comment: to appear in Proc. SPIE 773

    Using variable importance measures to identify a small set of SNPs to predict heading date in perennial ryegrass.

    Get PDF
    peer-reviewedPrior knowledge on heading date enables the selection of parents of synthetic cultivars that are well matched with respect to time of heading, which is essential to ensure plants put together will cross pollinate. Heading date of individual plants can be determined via direct phenotyping, which has a time and labour cost. It can also be inferred from family means, although the spread in days to heading within families demands roguing in first generation synthetics. Another option is to predict heading date from molecular markers. In this study we used a large training population consisting of individual plants to develop equations to predict heading date from marker genotypes. Using permutation-based variable selection measures we reduced the marker set from 217,563 to 50 without impacting the predictive ability. Opportunities exist to develop a cheap assay to sequence a small number of regions in linkage disequilibrium with heading date QTL in thousands of samples. Simultaneous use of these markers in non-linkage based marker-assisted selection approaches, such as paternity testing, should enhance the utility of such an approach

    Genomic prediction of crown rust resistance in Lolium perenne

    Get PDF
    peer-reviewedBackground Genomic selection (GS) can accelerate genetic gains in breeding programmes by reducing the time it takes to complete a cycle of selection. Puccinia coronata f. sp lolli (crown rust) is one of the most widespread diseases of perennial ryegrass and can lead to reductions in yield, persistency and nutritional value. Here, we used a large perennial ryegrass population to assess the accuracy of using genome wide markers to predict crown rust resistance and to investigate the factors affecting predictive ability. Results Using these data, predictive ability for crown rust resistance in the complete population reached a maximum of 0.52. Much of the predictive ability resulted from the ability of markers to capture genetic relationships among families within the training set, and reducing the marker density had little impact on predictive ability. Using permutation based variable importance measure and genome wide association studies (GWAS) to identify and rank markers enabled the identification of a small subset of SNPs that could achieve predictive abilities close to those achieved using the complete marker set. Conclusion Using a GWAS to identify and rank markers enabled a small panel of markers to be identified that could achieve higher predictive ability than the same number of randomly selected markers, and predictive abilities close to those achieved with the entire marker set. This was particularly evident in a sub-population characterised by having on-average higher genome-wide linkage disequilibirum (LD). Higher predictive abilities with selected markers over random markers suggests they are in LD with QTL. Accuracy due to genetic relationships will decay rapidly over generations whereas accuracy due to LD will persist, which is advantageous for practical breeding applications.This work received funding from the Irish Department of Agriculture Food and the Marine DAFM (RSF 11/S/109) and Teagasc core funding. SKA is supported by a Teagasc PhD Walsh Fellowship. SLB has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 658031
    corecore