2,671 research outputs found

    Slow pyrolysis as a method for the destruction of Japanese wireweed, Sargassum muticum

    Get PDF
    Japanese wireweed, Sargassum muticum is an invasive species to Great Britain, which might be controlled by harvesting it for energy and chemicals. Pyrolysis is the thermal decomposition of the organic components of dry biomass by heating in the absence of air. The distribution of matter between solid, liquid and syngas depends on the biomass and the pyrolysis temperature and time. Slow pyrolysis with lower temperatures (~ 400 oC) tends to produce more solid char. Pyrolysis char can be an effective soil ameliorant, a sequestration agent due to its stability or burned as a fuel. The research attempts to answer the question: Could slow pyrolysis be an energy efficient means for the destruction of Japanese wireweed and produce a potential product, biochar? A simple test rig was developed to establish the yield of biochar, biocrude and syngas from the slow pyrolysis of Sargassum muticum. An energy balance was calculated using compositional data from the analysis of the seaweed feedstock, higher heating values (HHV) from bomb-calorimetry and literature values. The energy required to heat 1 kg of dry seaweed by 400 oC for slow pyrolysis was estimated at 0.5 MJ. The HHV of syngas and biocrude produced from the pyrolysis totalled 2.9 MJ. There is, therefore, sufficient energy in the biocrude and syngas fractions produced by the pyrolysis of seaweed to power the process and produce useful biochar, but insufficient energy for drying

    Preferential association of hepatitis C virus with CD19+ B cells is mediated by complement system

    Get PDF
    Extrahepatic disease manifestations are common in chronic hepatitis C virus (HCV) infection. The mechanism of HCV-related lymphoproliferative disorders is not fully understood. Recent studies have found that HCV in peripheral blood mononuclear cells (PBMCs) from chronically infected patients is mainly associated with CD19+ B cells. To further elucidate this preferential association of HCV with B cells, we used in vitro cultured virus and uninfected PBMCs from healthy blood donors to investigate the necessary serum components that activate the binding of HCV to B cells. First, we found that the active serum components were present not only in HCV carriers, but also in HCV recovered patients and HCV negative healthy blood donors and that the serum components were heat labile. Second, the preferential binding activity of HCV to B cells could be blocked by anti-complement C3 antibodies. In experiments with complement-depleted serum and purified complement proteins, we demonstrated that complement proteins C1, C2, and C3 were required to activate such binding activity. Complement protein C4 was partially involved in this process. Third, using antibodies against cell surface markers, we showed that the binding complex mainly involved CD21 (complement receptor 2), CD19, CD20, and CD81; CD35 (complement receptor 1) was involved but had lower binding activity. Fourth, both anti-CD21 and anti-CD35 antibodies could block the binding of patient-derived HCV to B cells. Fifth, complement also mediated HCV binding to Raji cells, a cultured B cell line derived from Burkitt´s lymphoma.CONCLUSION:In chronic HCV infection, the preferential association of HCV with B cells is mediated by the complement system, mainly through complement receptor 2 (CD21), in conjunction with the CD19 and CD81 complex. This article is protected by copyright. All rights reserved.Fil: Wang, Richard. National Institutes of Health; Estados UnidosFil: Baré, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina. National Institutes of Health; Estados UnidosFil: De Giorgi, Valeria. National Institutes of Health; Estados UnidosFil: Matsuura, Kentaro. Nagoya City University Graduate School of Medicine; Japón. National Institutes of Health; Estados UnidosFil: Salam, Kazi Abdus. National Institutes of Health; Estados Unidos. University of Rajshahi; IndiaFil: Grandinetti, Teresa. National Institutes of Health; Estados UnidosFil: Schechterly, Cathy. National Institutes of Health; Estados UnidosFil: Alter, Harvey J.. National Institutes of Health; Estados Unido

    Hybrid striped bass aquaculture survey and the market potential

    Get PDF
    The following study was conducted to explore and assess the extent to which a market for hybrid striped bass could be developed and to recommend appropriate marketing strategies

    Carotenoid production by Dunaliella salina under red light

    Get PDF
    The halotolerant photoautotrophic marine microalga Dunaliella salina is one of the richest sources of natural carotenoids. Here we investigated the effects of high intensity blue, red and white light from light emitting diodes (LED) on the production of carotenoids by strains of D. salina under nutrient sufficiency and strict temperature control favouring growth. Growth in high intensity red light was associated with carotenoid accumulation and a high rate of oxygen uptake. On transfer to blue light, a massive drop in carotenoid content was recorded along with very high rates of photo-oxidation. In high intensity blue light, growth was maintained at the same rate as in red or white light, but without carotenoid accumulation; transfer to red light stimulated a small increase in carotenoid content. The data support chlorophyll absorption of red light photons to reduce plastoquinone in photosystem II, coupled to phytoene desaturation by plastoquinol:oxygen oxidoreductase, with oxygen as electron acceptor. Partitioning of electrons between photosynthesis and carotenoid biosynthesis would depend on both red photon flux intensity and phytoene synthase upregulation by the red light photoreceptor, phytochrome. Red light control of carotenoid biosynthesis and accumulation reduces the rate of formation of reactive oxygen species (ROS) as well as increases the pool size of anti-oxidant

    Effect of light intensity and wavelength on biomass growth and protein and amino acid composition of Dunaliella salina

    Get PDF
    Dunaliella salina is a halotolerant, photoautotrophic marine microalga and one of the richest sources of natural carotenoids but also shows potential as a novel food source with high protein quality. This study sought to optimise the production of biomass, protein and amino acids from D. salina, alongside carotenoids using a two-stage cultivation approach based on the use of light of different intensities and quality, i.e., white, red and blue LED light. In stage 1, four white LED light intensities were tested. In stage 2, the same four light intensities from either blue or red LEDs were applied once exponential growth ceased and cells reached the stationary phase under white LED light in stage 1. Remarkably, both biomass concentration and biomass productivity showed a 1.3–1.7-fold increase in stage 2, without medium replenishment, while protein concentration and protein productivity showed an ~1.1-fold increase. The amino acid content and amino acid index remained unchanged from stage 1 to stage 2, and minimum difference was found across different light intensities. Overall, D. salina delivered so-called high protein quality, with an essential amino acid index (EAAI) of 0.99, and red light, which has previously been shown to increase carotenoid production, boosted further biomass production over and above white light, at all light intensities tested

    An annotated list of the Lepidoptera of Honduras

    Get PDF
    A biodiversity inventory of the Lepidoptera of Pico Bonito National Park and vicinity, in the Department of Atlantida of northern Honduras, was initiated in 2009 to obtain baseline data. We present a revised checklist of Honduran butterfly species (updated from the initial 1967 lists), as well as the first comprehensive list of Honduran moths. Our updated list includes 550 species of Papilionoidea, 311 Hesperioidea, and 1,441 moth species

    Potential of new isolates of Dunaliella Salina for natural β-Carotene production

    Get PDF
    The halotolerant microalga Dunaliella salina has been widely studied for natural β-carotene production. This work shows biochemical characterization of three newly isolated Dunaliella salina strains, DF15, DF17, and DF40, compared with D. salina CCAP 19/30 and D. salina UTEX 2538 (also known as D. bardawil). Although all three new strains have been genetically characterized as Dunaliella salina strains, their ability to accumulate carotenoids and their capacity for photoprotection against high light stress are different. DF15 and UTEX 2538 reveal great potential for producing a large amount of β-carotene and maintained a high rate of photosynthesis under light of high intensity; however, DF17, DF40, and CCAP 19/30 showed increasing photoinhibition with increasing light intensity, and reduced contents of carotenoids, in particular β-carotene, suggesting that the capacity of photoprotection is dependent on the cellular content of carotenoids, in particular β-carotene. Strong positive correlations were found between the cellular content of all-trans β-carotene, 9-cis β-carotene, all-trans α-carotene and zeaxanthin but not lutein in the D. salina strains. Lutein was strongly correlated with respiration in photosynthetic cells and strongly related to photosynthesis, chlorophyll and respiration, suggesting an important and not hitherto identified role for lutein in coordinated control of the cellular functions of photosynthesis and respiration in response to changes in light conditions, which is broadly conserved in Dunaliella strains. Statistical analysis based on biochemical data revealed a different grouping strategy from the genetic classification of the strains. The significance of these data for strain selection for commercial carotenoid production is discussed

    An annotated list of the Lepidoptera of Honduras

    Get PDF
    A biodiversity inventory of the Lepidoptera of Pico Bonito National Park and vicinity, in the Department of Atlantida of northern Honduras, was initiated in 2009 to obtain baseline data. We present a revised checklist of Honduran butterfly species (updated from the initial 1967 lists), as well as the first comprehensive list of Honduran moths. Our updated list includes 550 species of Papilionoidea, 311 Hesperioidea, and 1,441 moth species

    The inhibition of anaerobic digestion by model phenolic compounds representative of those from Sargassum muticum

    Get PDF
    Practical yields of biogas from the anaerobic digestion of macroalgae, and Sargassum muticum in particular, are substantially below the theoretical maximum. There is considerable conjecture about the reasons for the relatively low practical methane yields from seaweed and polyphenols are suggested as one of the elements in the low yield of methane from brown seaweeds. However, there appears to be little information on the effect of specific phenolics on defined substrates. This paper examines the effect of some simple phenolic compounds, representative of those reported in Sargassum muticum, on methane production from a range of model substrates. Three simple phenolics were selected, gallic acid, epicatechin and phloroglucinol; at four addition levels, 0, 0.5, 3.5 and 7.5% w/w of substrate; for four substrates, a readily digested simple organic substance, glycerol, and three polymers found in seaweed, cellulose, alginic acid and the sodium salt of alginic acid. Alginic acid and its sodium salt were found to be recalcitrant with average methane yields equivalent to only 23% - 28% of their theoretical methane potential. Methane yield was further reduced by the presence of high concentrations (7% of substrate equivalent to 17.5 mg L-1) of phloroglucinol and epicatechin. None of the phenolic compounds studied appeared to inhibit the breakdown of the simple and readily digested compound, glycerol. Low methane yield in seaweed may be due to the recalcitrance of complex hydrocolloids and phenolic inhibition of the breakdown of more complex molecules in the initial hydrolysis stage of anaerobic digestion, but further research is required
    • …
    corecore