341 research outputs found

    Brainstem hypoxia contributes to the development of hypertension in the spontaneously hypertensive rat.

    Get PDF
    Systemic arterial hypertension has been previously suggested to develop as a compensatory condition when central nervous perfusion/oxygenation is compromised. Principal sympathoexcitatory C1 neurons of the rostral ventrolateral medulla oblongata (whose activation increases sympathetic drive and the arterial blood pressure) are highly sensitive to hypoxia, but the mechanisms of this O2 sensitivity remain unknown. Here, we investigated potential mechanisms linking brainstem hypoxia and high systemic arterial blood pressure in the spontaneously hypertensive rat. Brainstem parenchymal PO2 in the spontaneously hypertensive rat was found to be ≈15 mm Hg lower than in the normotensive Wistar rat at the same level of arterial oxygenation and systemic arterial blood pressure. Hypoxia-induced activation of rostral ventrolateral medulla oblongata neurons was suppressed in the presence of either an ATP receptor antagonist MRS2179 or a glycogenolysis inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol, suggesting that sensitivity of these neurons to low PO2 is mediated by actions of extracellular ATP and lactate. Brainstem hypoxia triggers release of lactate and ATP which produce excitation of C1 neurons in vitro and increases sympathetic nerve activity and arterial blood pressure in vivo. Facilitated breakdown of extracellular ATP in the rostral ventrolateral medulla oblongata by virally-driven overexpression of a potent ectonucleotidase transmembrane prostatic acid phosphatase results in a significant reduction in the arterial blood pressure in the spontaneously hypertensive rats (but not in normotensive animals). These results suggest that in the spontaneously hypertensive rat, lower PO2 of brainstem parenchyma may be associated with higher levels of ambient ATP and l-lactate within the presympathetic circuits, leading to increased central sympathetic drive and concomitant sustained increases in systemic arterial blood pressure

    Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?

    Get PDF
    Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure

    Why Can't Rodents Vomit? A Comparative Behavioral, Anatomical, and Physiological Study

    Get PDF
    The vomiting (emetic) reflex is documented in numerous mammalian species, including primates and carnivores, yet laboratory rats and mice appear to lack this response. It is unclear whether these rodents do not vomit because of anatomical constraints (e.g., a relatively long abdominal esophagus) or lack of key neural circuits. Moreover, it is unknown whether laboratory rodents are representative of Rodentia with regards to this reflex. Here we conducted behavioral testing of members of all three major groups of Rodentia; mouse-related (rat, mouse, vole, beaver), Ctenohystrica (guinea pig, nutria), and squirrel-related (mountain beaver) species. Prototypical emetic agents, apomorphine (sc), veratrine (sc), and copper sulfate (ig), failed to produce either retching or vomiting in these species (although other behavioral effects, e.g., locomotion, were noted). These rodents also had anatomical constraints, which could limit the efficiency of vomiting should it be attempted, including reduced muscularity of the diaphragm and stomach geometry that is not well structured for moving contents towards the esophagus compared to species that can vomit (cat, ferret, and musk shrew). Lastly, an in situ brainstem preparation was used to make sensitive measures of mouth, esophagus, and shoulder muscular movements, and phrenic nerve activity-key features of emetic episodes. Laboratory mice and rats failed to display any of the common coordinated actions of these indices after typical emetic stimulation (resiniferatoxin and vagal afferent stimulation) compared to musk shrews. Overall the results suggest that the inability to vomit is a general property of Rodentia and that an absent brainstem neurological component is the most likely cause. The implications of these findings for the utility of rodents as models in the area of emesis research are discussed. © 2013 Horn et al

    New Zealand Blackcurrant Extract Improves Cycling Performance and Fat Oxidation in Cyclists

    Get PDF
    PURPOSE: Blackcurrant intake increases peripheral blood flow in humans, potentially by anthocyanin-induced vasodilation which may affect substrate delivery and exercise performance. We examined the effects of New Zealand blackcurrant (NZBC) extract on substrate oxidation, cycling time-trial performance and plasma lactate responses following the time-trial in trained cyclists. METHODS: Using a randomized, double-blind, crossover design, fourteen healthy men (age: 38 ± 13 years, height: 178 ± 4 cm, body mass: 77 ± 9 kg, V?O2max: 53 ± 6 ml·kg-1·min-1, mean ± SD) ingested NZBC extract (300 mg?day-1 CurraNZ™ containing 105 mg anthocyanin) or placebo (PL, 300 mg microcrystalline cellulose M102) for 7-days (washout 14-days). On day 7, participants performed 30 min of cycling (3x10 min at 45, 55 and 65% V?O2max), followed by a 16.1 km time-trial with lactate sampling during a 20-minute passive recovery. RESULTS: NZBC extract increased fat oxidation at 65% V?O2max by 27% (P < 0.05) and improved 16.1 km time-trial performance by 2.4% (NZBC: 1678 ± 108 s, PL: 1722 ± 131 s, P < 0.05). Plasma lactate was higher with NZBC extract immediately following the time-trial (NZBC: 7.06 ± 1.73 mmol?L-1, PL: 5.92 ± 1.58 mmol?L-1 P < 0.01). CONCLUSIONS: Seven days intake of New Zealand blackcurrant extract improves 16.1 km cycling time-trial performance and increases fat oxidation during moderate intensity cycling

    Dual oscillator model of the respiratory neuronal network generating quantal slowing of respiratory rhythm

    Get PDF
    We developed a dual oscillator model to facilitate the understanding of dynamic interactions between the parafacial respiratory group (pFRG) and the preBötzinger complex (preBötC) neurons in the respiratory rhythm generation. Both neuronal groups were modeled as groups of 81 interconnected pacemaker neurons; the bursting cell model described by Butera and others [model 1 in Butera et al. (J Neurophysiol 81:382–397, 1999a)] were used to model the pacemaker neurons. We assumed (1) both pFRG and preBötC networks are rhythm generators, (2) preBötC receives excitatory inputs from pFRG, and pFRG receives inhibitory inputs from preBötC, and (3) persistent Na+ current conductance and synaptic current conductances are randomly distributed within each population. Our model could reproduce 1:1 coupling of bursting rhythms between pFRG and preBötC with the characteristic biphasic firing pattern of pFRG neurons, i.e., firings during pre-inspiratory and post-inspiratory phases. Compatible with experimental results, the model predicted the changes in firing pattern of pFRG neurons from biphasic expiratory to monophasic inspiratory, synchronous with preBötC neurons. Quantal slowing, a phenomena of prolonged respiratory period that jumps non-deterministically to integer multiples of the control period, was observed when the excitability of preBötC network decreased while strengths of synaptic connections between the two groups remained unchanged, suggesting that, in contrast to the earlier suggestions (Mellen et al., Neuron 37:821–826, 2003; Wittmeier et al., Proc Natl Acad Sci USA 105(46):18000–18005, 2008), quantal slowing could occur without suppressed or stochastic excitatory synaptic transmission. With a reduced excitability of preBötC network, the breakdown of synchronous bursting of preBötC neurons was predicted by simulation. We suggest that quantal slowing could result from a breakdown of synchronized bursting within the preBötC

    Whole brain radiotherapy (WBRT) after local treatment of brain metastases in melanoma patients: Statistical Analysis Plan

    Get PDF
    Background The WBRTMel trial is a multinational, open-label, phase III randomised controlled trial comparing whole brain radiotherapy (WBRT) to observation following local treatment of one to three melanoma brain metastases with surgery and/or stereotactic irradiation. The primary trial endpoint was to determine the effect of adding WBRT to local treatment on distant intracranial control, and the secondary endpoints were neurocognitive function, quality of life (QoL), performance status, overall survival, death from intracranial causes, death from melanoma and cost-effectiveness. Objective The objective of this update is to outline and publish the pre-determined statistical analysis plan (SAP) before the database lock and the start of analysis. Methods The SAP describes basic analysis principles, methods for dealing with a range of commonly encountered data analysis issues and the specific statistical procedures for analysing efficacy and safety outcomes. The SAP was approved after closure of recruitment and before completion of patient follow-up. It outlines the planned primary analyses and a range of subgroup and sensitivity analyses regarding the clinical and QoL outcomes. Health economic outcomes are not included in this plan but will be analysed separately. The SAP will be adhered to for the final data analysis of this trial to avoid analysis bias arising from knowledge of the data. Results The resulting SAP is consistent with best practice and will allow open and transparent reporting. Conclusion We have developed a SAP for the WBRTMel trial which will be followed to ensure high-quality standards of internal validity to minimise analysis bias

    Predictors of mortality in HIV-infected patients starting antiretroviral therapy in a rural hospital in Tanzania

    Get PDF
    \ud \ud Studies of antiretroviral therapy (ART) programs in Africa have shown high initial mortality. Factors contributing to this high mortality are poorly described. The aim of the present study was to assess mortality and to identify predictors of mortality in HIV-infected patients starting ART in a rural hospital in Tanzania. This was a cohort study of 320 treatment-naïve adults who started ART between October 2003 and November 2006. Reliable CD4 cell counts were not available, thus ART initiation was based on clinical criteria in accordance with WHO and Tanzanian guidelines. Kaplan-Meier models were used to estimate mortality and Cox proportional hazards models to identify predictors of mortality. Patients were followed for a median of 10.9 months (IQR 2.9-19.5). Overall, 95 patients died, among whom 59 died within 3 months of starting ART. Estimated mortality was 19.2, 29.0 and 40.7% at 3, 12 and 36 months, respectively. Independent predictors of mortality were severe anemia (hemoglobin <8 g/dL; adjusted hazard ratio [AHR] 9.20; 95% CI 2.05-41.3), moderate anemia (hemoglobin 8-9.9 g/dL; AHR 7.50; 95% CI 1.77-31.9), thrombocytopenia (platelet count <150 x 109/L; AHR 2.30; 95% CI 1.33-3.99) and severe malnutrition (body mass index <16 kg/m2; AHR 2.12; 95% CI 1.06-4.24). Estimated one year mortality was 55.2% in patients with severe anemia, compared to 3.7% in patients without anemia (P < 0.001). Mortality was found to be high, with the majority of deaths occurring within 3 months of starting ART. Anemia, thrombocytopenia and severe malnutrition were strong independent predictors of mortality. A prognostic model based on hemoglobin level appears to be a useful tool for initial risk assessment in resource-limited settings.\u
    • …
    corecore