148 research outputs found

    Anisotropy parameters of superconducting MgB2_2

    Full text link
    Data on macroscopic superconducting anisotropy of MgB2_2 are reviewed. The data are described within a weak coupling two-gaps anisotropic s-wave model of superconductivity. The calculated ratio of the upper critical fields γH=Hc2,ab/Hc2,c\gamma_H=H_{c2,ab}/H_{c2,c} increases with decreasing temperature in agreement with available data, whereas the calculated ratio of London penetration depths γλ=λc/λab\gamma_{\lambda}=\lambda_c/\lambda_{ab} decreases to reach 1.1\approx 1.1 at T=0. Possible macroscopic consequences of γλγH\gamma_{\lambda}\ne\gamma_H are discussed.Comment: accepted to Physica C, special MgB2 issu

    Angular dependence of the bulk nucleation field Hc2 of aligned MgB2 crystallites

    Full text link
    Studies on the new MgB2 superconductor, with a critical temperature Tc ~ 39 K, have evidenced its potential for applications although intense magnetic relaxation effects limit the critical current density, Jc, at high magnetic fields. This means that effective pinning centers must be added into the material microstructure, in order to halt dissipative flux movements. Concerning the basic microscopic mechanism to explain the superconductivity in MgB2, several experimental and theoretical works have pointed to the relevance of a phonon-mediated interaction, in the framework of the BCS theory. Questions have been raised about the relevant phonon modes, and the gap and Fermi surface anisotropies, in an effort to interpret spectroscopic and thermal data that give values between 2.4 and 4.5 for the gap energy ratio. Preliminary results on the anisotropy of Hc2 have shown a ratio, between the in-plane and perpendicular directions, around 1.7 for aligned MgB2 crystallites and 1.8 for epitaxial thin films. Here we show a study on the angular dependence of Hc2 pointing to a Fermi velocity anisotropy around 2.5. This anisotropy certainly implies the use of texturization techniques to optimize Jc in MgB2 wires and other polycrystalline components.Comment: 10 pages + 4 Figs.; Revised version accepted in Phys. Rev.

    Unusual effects of anisotropy on the specific heat of ceramic and single crystal MgB2

    Full text link
    The two-gap structure in the superconducting state of MgB_2 gives rise to unusual thermodynamic properties which depart markedly from the isotropic single-band BCS model, both in their temperature- and field dependence. We report and discuss measurements of the specific heat up to 16 T on ceramic, and up to 14 T on single crystal samples, which demonstrate these effects in the bulk. The behavior in zero field is described in terms of two characteristic temperatures, a crossover temperature Tc_pi ~ 13 K, and a critical temperature Tc = Tc_sigma ~ 38 K, whereas the mixed-state specific heat requires three characteristic fields, an isotropic crossover field Hc2_pi ~ 0.35 T, and an anisotropic upper critical field with extreme values Hc2_sigma_c ~ 3.5 T and Hc2_sigma_ab ~ 19 T, where the indexes \pi and \sigma refer to the 3D and 2D sheets of the Fermi surface. Irradiation-induced interband scattering tends to move the gaps toward a common value, and increases the upper critical field up to ~ 28 T when Tc = 30 K.Comment: 31 pages, 9 figures. Accepted in the Physica C special issue on MgB

    A magnetization and 11^{11}B NMR study of Mg1x_{1-x}Alx_xB2_2 superconductors

    Full text link
    We demonstrate for the first time the magnetic field distribution of the pure vortex state in lightly doped Mg1x_{1-x}Alx_xB2_2 (x0.025x\leq 0.025) powder samples, by using 11^{11}B NMR in magnetic fields of 23.5 and 47 kOe. The magnetic field distribution at T=5 K is Al-doping dependent, revealing a considerable decrease of anisotropy in respect to pure MgB2_2. This result correlates nicely with magnetization measurements and is consistent with σ\sigma-band hole driven superconductivity for MgB2_2

    Electronic anisotropy, magnetic field-temperature phase diagram and their dependence on resistivity in c-axis oriented MgB2 thin films

    Full text link
    An important predicted, but so far uncharacterized, property of the new superconductor MgB2 is electronic anisotropy arising from its layered crystal structure. Here we report on three c-axis oriented thin films, showing that the upper critical field anisotropy ratio Hc2par/Hc2perp is 1.8 to 2.0, the ratio increasing with higher resistivity. Measurements of the magnetic field-temperature phase diagram show that flux pinning disappears at H* ~ 0.8Hc2perp(T) in untextured samples. Hc2par(0) is strongly enhanced by alloying to 39 T for the highest resistivity film, more than twice that seen in bulk samples.Comment: 5 pages Acrobat 3.02 pd

    The supernatural characters and powers of sacred trees in the Holy Land

    Get PDF
    This article surveys the beliefs concerning the supernatural characteristics and powers of sacred trees in Israel; it is based on a field study as well as a survey of the literature and includes 118 interviews with Muslims and Druze. Both the Muslims and Druze in this study attribute supernatural dimensions to sacred trees which are directly related to ancient, deep-rooted pagan traditions. The Muslims attribute similar divine powers to sacred trees as they do to the graves of their saints; the graves and the trees are both considered to be the abode of the soul of a saint which is the source of their miraculous powers. Any violation of a sacred tree would be strictly punished while leaving the opportunity for atonement and forgiveness. The Druze, who believe in the transmigration of souls, have similar traditions concerning sacred trees but with a different religious background. In polytheistic religions the sacred grove/forest is a centre of the community's official worship; any violation of the trees is regarded as a threat to the well being of the community. Punishments may thus be collective. In the monotheistic world (including Christianity, Islam and Druze) the pagan worship of trees was converted into the worship/adoration of saints/prophets; it is not a part of the official religion but rather a personal act and the punishments are exerted only on the violating individual

    Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1

    Get PDF
    Myeloproliferative neoplasms (MPNs) originate from genetically transformed hematopoietic stem cells that retain the capacity for multilineage differentiation and effective myelopoiesis. Beginning in early 2005, a number of novel mutations involving Janus kinase 2 (JAK2), Myeloproliferative Leukemia Virus (MPL), TET oncogene family member 2 (TET2), Additional Sex Combs-Like 1 (ASXL1), Casitas B-lineage lymphoma proto-oncogene (CBL), Isocitrate dehydrogenase (IDH) and IKAROS family zinc finger 1 (IKZF1) have been described in BCR-ABL1-negative MPNs. However, none of these mutations were MPN specific, displayed mutual exclusivity or could be traced back to a common ancestral clone. JAK2 and MPL mutations appear to exert a phenotype-modifying effect and are distinctly associated with polycythemia vera, essential thrombocythemia and primary myelofibrosis; the corresponding mutational frequencies are ∼99, 55 and 65% for JAK2 and 0, 3 and 10% for MPL mutations. The incidence of TET2, ASXL1, CBL, IDH or IKZF1 mutations in these disorders ranges from 0 to 17% these latter mutations are more common in chronic (TET2, ASXL1, CBL) or juvenile (CBL) myelomonocytic leukemias, mastocytosis (TET2), myelodysplastic syndromes (TET2, ASXL1) and secondary acute myeloid leukemia, including blast-phase MPN (IDH, ASXL1, IKZF1). The functional consequences of MPN-associated mutations include unregulated JAK-STAT (Janus kinase/signal transducer and activator of transcription) signaling, epigenetic modulation of transcription and abnormal accumulation of oncoproteins. However, it is not clear as to whether and how these abnormalities contribute to disease initiation, clonal evolution or blastic transformation
    corecore