253 research outputs found

    Genetic diversity, linkage disequilibrium and population structure among CIMMYT maize inbred lines, selected for heat tolerance study

    Get PDF
    Rising temperatures has led to reduced maize yields in tropical and sub tropical countries. This provides the necessity for identifying the diverse inbred lines that can produce high yielding hybrids under high temperature regimes. With this view, the present study was conducted to analyse the extent of genetic diversity and population structure among 64 CIMMYT maize inbred lines using SNP markers derived from GBS (Genotyping by sequencing) along with characterization of haplotype blocks and linkage disequilibrium. The average polymorphic information content (0.37) and gene diversity was very high (0.5) with mean kinship coefficients of 0.28 and genetic distance more than 0.4 between pair of two inbred lines. Clustering analysis based on ward’s method and euclid- ian distance showed presence of three sub groups. The population structure analysis using principle components showed three sub population. The average physical distance between pairs of markers was 27.7 kb with linkage disequilibrium (LD) estimation (r2) of 0.36 across all chromosomes, with rapid LD decay of 6.34 kb at r2 = 0.2. Haplotype analysis with 75,664 SNPs under confidence interval model revealed 616 haplotype blocks across all chromosomes with highest number of blocks on chromosome 5. The results clearly indicate the uniqueness of the majority of the inbred lines, which can contribute to new alleles in breeding programs for heat tolerance

    Development and Wear Analysis of Carbidic Austempered Ductile Iron (CADI)

    Get PDF
    Abstract: The abrasion wear resistance of iron is improved by the incorporation of an extra phase in the matrix, typically consist of carbides. The objective of the present work is to produce carbides in a ductile cast iron which is subsequently austempered, to obtain the carbidic austempered ductile iron (CADI). Two variants of (CADI)were produced by heating carbidic ductile iron (CDI) to a austenitization temperature of 900 0 C for the period of 1hr and quenching in salt bath at temperature range 250 0 C,325 0 Cand 400 0 C for the period of 1hr, 2hr, 3hr respectively. The microstructural characteristics of the produced CADI were evaluated by optical microscope. The abrasion wear resistance was evaluated by testing in accordance with ASTM G 99 standard. Carbidic ductile iron (CDI) as-cast samples were taken as reference material to determine the relative wear resistance index E. The results obtained, allow to establishing a relationship between Cr content in the alloy, austempering parameters, microstructure and mechanical properties of CADI. It was found that increase in the CE, content in CADI increases the volume fraction of Carbides in an alloy which resulted in to enhancement in hardness and wear resistance

    Massless D-strings and moduli stabilization in type I cosmology

    Get PDF
    We consider the cosmological evolution induced by the free energy F of a gas of maximally supersymmetric heterotic strings at finite temperature and weak coupling in dimension D>=4. We show that F, which plays the role of an effective potential, has minima associated to enhanced gauge symmetries, where all internal moduli can be attracted and dynamically stabilized. Using the fact that the heterotic/type I S-duality remains valid at finite temperature and can be applied at each instant of a quasi-static evolution, we find in the dual type I cosmology that all internal NS-NS and RR moduli in the closed string sector and the Wilson lines in the open string sector can be stabilized. For the special case of D=6, the internal volume modulus remains a flat direction, while the dilaton is stabilized. An essential role is played by light D-string modes wrapping the internal manifold and whose contribution to the free energy cannot be omitted, even when the type I string is at weak coupling. As a result, the order of magnitude of the internal radii expectation values on the type I side is (lambda_I alpha')^{1/2}, where lambda_I is the ten-dimensional string coupling. The non-perturbative corrections to the type I free energy can alternatively be described as effects of "thermal E1-instantons", whose worldsheets wrap the compact Euclidean time cycle.Comment: 39 pages, 1 figur

    Rpgrip1 is required for rod outer segment development and ciliary protein trafficking in zebrafish

    Get PDF
    The authors would like to thank the Royal Society of London, the National Eye Research Centre, the Visual Research Trust, Fight for Sight, the W.H. Ross Foundation, the Rosetrees Trust, and the Glasgow Children’s Hospital Charity for supporting this work. This work was also supported by the Deanship of Scientific Research at King Saud University for funding this research (Research Project) grant number ‘RGP – VPP – 219’.Mutations in the RPGR-interacting protein 1 (RPGRIP1) gene cause recessive Leber congenital amaurosis (LCA), juvenile retinitis pigmentosa (RP) and cone-rod dystrophy. RPGRIP1 interacts with other retinal disease-causing proteins and has been proposed to have a role in ciliary protein transport; however, its function remains elusive. Here, we describe a new zebrafish model carrying a nonsense mutation in the rpgrip1 gene. Rpgrip1homozygous mutants do not form rod outer segments and display mislocalization of rhodopsin, suggesting a role for RPGRIP1 in rhodopsin-bearing vesicle trafficking. Furthermore, Rab8, the key regulator of rhodopsin ciliary trafficking, was mislocalized in photoreceptor cells of rpgrip1 mutants. The degeneration of rod cells is early onset, followed by the death of cone cells. These phenotypes are similar to that observed in LCA and juvenile RP patients. Our data indicate RPGRIP1 is necessary for rod outer segment development through regulating ciliary protein trafficking. The rpgrip1 mutant zebrafish may provide a platform for developing therapeutic treatments for RP patients.Publisher PDFPeer reviewe

    Lectures on Cosmic Inflation and its Potential Stringy Realizations

    Full text link
    These notes present a brief introduction to Hot Big Bang cosmology and Cosmic Inflation, together with a selection of some recent attempts to embed inflation into string theory. They provide a partial description of lectures presented in courses at Dubrovnik in August 2006, at CERN in January 2007 and at Cargese in August 2007. They are aimed at graduate students with a working knowledge of quantum field theory, but who are unfamiliar with the details of cosmology or of string theory.Comment: 68 pages, lectures given at Dubrovnik, Aug 2006; CERN, January 2007; and Cargese, Aug 200

    Second primary cancers after radiation for prostate cancer: a review of data from planning studies

    Get PDF
    A review of planning studies was undertaken to evaluate estimated risks of radiation induced second primary cancers (RISPC) associated with different prostate radiotherapy techniques for localised prostate cancer. A total of 83 publications were identified which employed a variety of methods to estimate RISPC risk. Of these, the 16 planning studies which specifically addressed absolute or relative second cancer risk using dose–response models were selected for inclusion within this review. There are uncertainties and limitations related to all the different methods for estimating RISPC risk. Whether or not dose models include the effects of the primary radiation beam, as well as out-of-field regions, influences estimated risks. Regarding the impact of IMRT compared to 3D-CRT, at equivalent energies, several studies suggest an increase in risk related to increased leakage contributing to out-of-field RISPC risk, although in absolute terms this increase in risk may be very small. IMRT also results in increased low dose normal tissue irradiation, but the extent to which this has been estimated to contribute to RISPC risk is variable, and may also be very small. IMRT is often delivered using 6MV photons while conventional radiotherapy often requires higher energies to achieve adequate tissue penetration, and so comparisons between IMRT and older techniques should not be restricted to equivalent energies. Proton and brachytherapy planning studies suggest very low RISPC risks associated with these techniques. Until there is sufficient clinical evidence regarding RISPC risks associated with modern irradiation techniques, the data produced from planning studies is relevant when considering which patients to irradiate, and which technique to employ

    Structure-Function Studies of DNA Binding Domain of Response Regulator KdpE Reveals Equal Affinity Interactions at DNA Half-Sites

    Get PDF
    Expression of KdpFABC, a K+ pump that restores osmotic balance, is controlled by binding of the response regulator KdpE to a specific DNA sequence (kdpFABCBS) via the winged helix-turn-helix type DNA binding domain (KdpEDBD). Exploration of E. coli KdpEDBD and kdpFABCBS interaction resulted in the identification of two conserved, AT-rich 6 bp direct repeats that form half-sites. Despite binding to these half-sites, KdpEDBD was incapable of promoting gene expression in vivo. Structure-function studies guided by our 2.5 Å X-ray structure of KdpEDBD revealed the importance of residues R193 and R200 in the α-8 DNA recognition helix and T215 in the wing region for DNA binding. Mutation of these residues renders KdpE incapable of inducing expression of the kdpFABC operon. Detailed biophysical analysis of interactions using analytical ultracentrifugation revealed a 2∶1 stoichiometry of protein to DNA with dissociation constants of 200±100 and 350±100 nM at half-sites. Inactivation of one half-site does not influence binding at the other, indicating that KdpEDBD binds independently to the half-sites with approximately equal affinity and no discernable cooperativity. To our knowledge, these data are the first to describe in quantitative terms the binding at half-sites under equilibrium conditions for a member of the ubiquitous OmpR/PhoB family of proteins
    • 

    corecore