92 research outputs found

    Sticky stuff : redefining bedform prediction in modern and ancient environments

    Get PDF
    This work was funded by the UK Natural Environment Research Council (NERC) under the COHBED project (NE/1027223/1). Paterson was funded by the Marine Alliance for Science and Technology for Scotland (MASTS).The dimensions and dynamics of subaqueous bedforms are well known for cohesionless sediments. However, the effect of physical cohesion imparted by cohesive clay within mixed sand-mud substrates has not been examined, despite its recognized influence on sediment stability. Here we present a series of controlled laboratory experiments to establish the influence of substrate clay content on subaqueous bedform dynamics within mixtures of sand and clay exposed to unidirectional flow. The results show that bedform dimensions and steepness decrease linearly with clay content, and comparison with existing predictors of bedform dimensions, established within cohesionless sediments, reveals significant over-prediction of bedform size for all but the lowermost clay contents examined. The profound effect substrate clay content has on bedform dimensions has a number of important implications for interpretation in a range of modern and ancient environments, including reduced roughness and bedform heights in estuarine systems and the often cited lack of large dune cross-sets in turbidites. The results therefore offer a step change in our understanding of bedform formation and dynamics in these, and many other, sedimentary environments.Publisher PDFPeer reviewe

    Current- and Wave-Generated Bedforms on Mixed Sand–Clay Intertidal Flats: A New Bedform Phase Diagram and Implications for Bed Roughness and Preservation Potential

    Get PDF
    The effect of bedforms on frictional roughness felt by the overlying flow is crucial to the regional modelling of estuaries and coastal seas. Bedforms are also a key marker of palaeoenvironments. Experiments have shown that even modest biotic and abiotic cohesion in sand inhibits bedform formation, modifies bedform size, and slows bedform development, but this has rarely been tested in nature. The present study used a comprehensive dataset recorded over a complete spring–neap cycle on an intertidal flat to investigate bedform dynamics controlled by a wide range of wave and current conditions, including the effects of wave–current angle and bed cohesion. A detailed picture of different bedform types and their relationship to the flow, be they equilibrium, non-equilibrium, or relict, was produced, and captured in a phase diagram that integrates wave-dominated, current-dominated, and combined wave–current bedforms. This bedform phase diagram incorporates a substantially wider range of flow conditions than previous phase diagrams, including bedforms related to near-orthogonal wave–current angles, such as ladderback ripples. Comparison with laboratory-derived bedform phase diagrams indicates that washed-out ripples, lunate interference ripples and upper-stage plane beds replace the subaqueous dune field; such bedform distributions may be a key characteristic of intertidal flats. The field data also provide a means of predicting the dimensions of these bedforms, which can be transferred to other areas and grain sizes. We show that an equation for the prediction of equilibrium bedform size is sufficient to predict the roughness, even though the bedforms are highly variable in character and only in equilibrium with the flow for approximately half the time. Whilst the effect of cohesive clay is limited under more active spring conditions, clay does play a role in reducing the bedform dimensions under more quiescent neap conditions. We also investigated which combinations of waves, currents, and bed clay contents in the intertidal zone have the highest potential for bedform preservation in the geological record. This shows that combined wave–current bedforms have the lowest preservation potential and equilibrium current ripples have the highest preservation potential, even in the presence of moderate and storm waves. Hence, the absence of wave ripples and combined-flow bedforms and their primary stratification in sedimentary successions cannot be taken as evidence that waves were absent at the time of deposition

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Encompassing the relative non-target risks from agents and their alien plant targets in biological control assessments

    Get PDF
    Criticisms about the safety of biological control of alien plants has resulted in a risk-averse approach, where the risks posed by the agent are paramount and the risks posed by the alien plant are neglected. We argue that the risk associated with nontarget damage from agents needs to be assessed relative to that of their target alien plants. A literature review of the non-target risks associated with biological control agents was undertaken in terms of the risk to native species from agents relative to the risk to native species from their alien plant targets. We then developed a framework that compares the consequence with the likelihood of non-target damage for both agents and their targets to provide an overall risk rating. Assessments of the risk of damage from both agents and their target alien plants will enable researchers, managers and policy makers to better assess the risks from biological control

    Field-based ecological studies to assess prospective biological control agents for invasive alien plants: an example from giant rat’s tail grass

    No full text
    Biological control (biocontrol) of invasive alien plants is a widely utilised weed management tool. Prospective biocontrol agents are typically assessed through host-specificity testing and pre-release efficacy studies performed in quarantine. However, rearing of the potential biocontrol agents and/or test plants is often difficult or impossible under quarantine conditions. Moreover, practitioners may attain laboratory-artefacts in quarantine, which may result in the potential agent being needlessly rejected. Field-based studies in the weed’s indigenous distribution could overcome these issues. Sporobolus pyramidalis and Sporobolus natalensis (giant rat’s tail grass; Poaceae) are indigenous in Africa but have become problematic invasive alien plants in Australia. A previous biocontrol programme was terminated because the candidate agent could not be reared and tested in quarantine. We performed field-based host-specificity and efficacy studies for prospective biocontrol agents in South Africa (indigenous distribution). Forty-seven non-target grass species were sampled during host-specificity assessments. Candidate agent efficacy was estimated based on damage to the target weeds, for each host-specific candidate individually and in combination with other host-specific candidates. Three species of endophagous wasps were deemed host-specific. Efficacy assessments identified an undescribed stem-boring wasp (Tetramesa sp.) species as the most damaging candidate. A second Tetramesa species was much less damaging alone but had a cumulative impact on the plant in combination with the more damaging Tetramesa species. Both Tetramesa species are recommended for importation into quarantine in Australia for confirmatory host-specificity testing with a significantly reduced test plant list. Synthesis and applications: Similar field-based assessments in the indigenous distribution of weeds targeted for biocontrol could be included in future programmes. Where rearing of potential agents and/or test plants is difficult or impossible under quarantine conditions, our field-based method provides an alternative. Where quarantine-based testing is feasible, this method ensures that only candidates that have passed an ecologically realistic host-specificity and potential efficacy screening are imported into quarantine. This may reduce the number of agents that are imported and the length of time each agent is kept in quarantine. This is advantageous because quarantine space is highly valuable and is usually a limiting factor in pre-release assessments of biocontrol agents

    Effects of air filtration at small SO2 and NO2 concentrations on the yield of barley.

    No full text
    Two cultivars of Igri and Gerbel winter barley Horteum vulgare L. were grown in open-top chambers in filtered and unfiltered air at a site with approximately 10 nl litree−1 SO2 and 12 nl litre−1 NO2 (seasonal mean). The experiment ran for three consecutive seasons 1982–1983, 1983–1984, 1984–1985, and significant effects of filtration were observed for each crop. In years 1982–1983 and 1984–1985, the crops in unfiltered air yielded larger grain dry matter, 9% in 1982–1983, and 8% in 1984–1985. For both crops, the differences were statistically significant at the 5% level. Differences were also observed for the remaining above-ground dry matter, and these were consistent in direction in each year but statistically significant only in 1984–1985. In both growing seasons (1982–1983 and 1984–1985), there were no major pest infestations and no long-term water stress or photochemical ozone episodes. In the remaining experiment (1983–1984) similar air concentrations of SO2 and NO2 produced effects of the opposite sign to those observed in 1982–1983 and 1984–1985. Significant reductions in grain yield (13%) were obtained in unfiltered air. The only major environmental difference for the 1983–1984 crop was a notable dry period in May and June 1984 with marked water stress in the crop, requiring irrigation. These results suggest that the relationship between yield and pollutant concentration may be confounded by additional stresses, many of which are a common component of the growing season for major crops
    • …
    corecore