1,912 research outputs found

    A Unified Framework for Producing CAI Melting, Wark-Lovering Rims and Bowl-Shaped CAIs

    Full text link
    Calcium Aluminium Inclusions (CAIs) formed in the Solar System, some 4,567 million years ago. CAIs are almost always surrounded by Wark-Lovering Rims (WLRs), which are a sequence of thin, mono/bi-mineralic layers of refractory minerals, with a total thickness in the range of 1 to 100 microns. Recently, some CAIs have been found that have tektite-like bowl-shapes. To form such shapes, the CAI must have travelled through a rarefied gas at hypersonic speeds. We show how CAIs may have been ejected from the inner solar accretion disc via the centrifugal interaction between the solar magnetosphere and the inner disc rim. They subsequently punched through the hot, inner disc rim wall at hypersonic speeds. This re-entry heating partially or completely evaporated the CAIs. Such evaporation could have significantly increased the metal abundances of the inner disc rim. High speed movement through the inner disc produced WLRs. To match the observed thickness of WLRs required metal abundances at the inner disc wall that are of order ten times that of standard solar abundances. The CAIs cooled as they moved away from the protosun, the deduced CAI cooling rates are consistent with the CAI cooling rates obtained from experiment and observation. The speeds and gas densities required to form bowl-shaped CAIs are also consistent with the expected speeds and gas densities for larger, ~ 1 cm, CAIs punching through an inner accretion disc wall.Comment: 70 pages, 41 figure

    Self-assembly of multi-component fluorescent molecular logic gates in micelles

    Get PDF
    A recent strategy for developing supramolecular logic gates in water is based on combinations of molecules via self-assembly with surfactants, which eliminates the need for time-consuming synthesis. The self-assembly of surfactants and lumophores and receptors can result in interesting properties providing cooperative e ffects useful for molecular information processing and other potential applications such as drug delivery systems. This article highlights some of the recent advancements in supramolecular information processing using microheterogeneous media including micelles in aqueous solution.peer-reviewe

    Parallel compensatory evolution stabilizes plasmids across the parasitism-mutualism continuum

    Get PDF
    Plasmids drive genomic diversity in bacteria via horizontal gene transfer [1 and 2]; nevertheless, explaining their survival in bacterial populations is challenging [3]. Theory predicts that irrespective of their net fitness effects, plasmids should be lost: when parasitic (costs outweigh benefits), plasmids should decline due to purifying selection [4, 5 and 6], yet under mutualism (benefits outweigh costs), selection favors the capture of beneficial accessory genes by the chromosome and loss of the costly plasmid backbone [4]. While compensatory evolution can enhance plasmid stability within populations [7, 8, 9, 10, 11, 12, 13, 14 and 15], the propensity for this to occur across the parasitism-mutualism continuum is unknown. We experimentally evolved Pseudomonas fluorescens and its mercury resistance mega-plasmid, pQBR103 [ 16], across an environment-mediated parasitism-mutualism continuum. Compensatory evolution stabilized plasmids by rapidly ameliorating the cost of plasmid carriage in all environments. Genomic analysis revealed that, in both parasitic and mutualistic treatments, evolution repeatedly targeted the gacA/gacS bacterial two-component global regulatory system while leaving the plasmid sequence intact. Deletion of either gacA or gacS was sufficient to completely ameliorate the cost of plasmid carriage. Mutation of gacA/gacS downregulated the expression of ∼17% of chromosomal and plasmid genes and appears to have relieved the translational demand imposed by the plasmid. Chromosomal capture of mercury resistance accompanied by plasmid loss occurred throughout the experiment but very rarely invaded to high frequency, suggesting that rapid compensatory evolution can limit this process. Compensatory evolution can explain the widespread occurrence of plasmids and allows bacteria to retain horizontally acquired plasmids even in environments where their accessory genes are not immediately useful

    New methods for unmixing sediment grain size data

    Get PDF
    Grain size distribution (GSD) data are widely used in Earth sciences and although large data sets are regularly generated, detailed numerical analyses are not routine. Unmixing GSDs into components can help understand sediment provenance and depositional regimes/processes. End-member analysis (EMA), which fits one set of end-members to a given data set, is a powerful way to unmix GSDs into geologically meaningful parts. EMA estimates end-members based on covariability within a data set and can be considered as a nonparametric approach. Available EMA algorithms, however, either produce suboptimal solutions or are time consuming. We introduce unmixing algorithms inspired by hyperspectral image analysis that can be applied to GSD data and which provide an improvement over current techniques. Nonparametric EMA is often unable to identify unimodal grain size subpopulations that correspond to single sediment sources. An alternative approach is single-specimen unmixing (SSU), which unmixes individual GSDs into unimodal parametric distributions (e.g., lognormal). We demonstrate that the inherent nonuniqueness of SSU solutions renders this approach unviable for estimating underlying mixing processes. To overcome this, we develop a new algorithm to perform parametric EMA, whereby an entire data set can be unmixed into unimodal parametric end-members (e.g., Weibull distributions). This makes it easier to identify individual grain size subpopulations in highly mixed data sets. To aid investigators in applying these methods, all of the new algorithms are available in AnalySize, which is GUI software for processing and unmixing grain size data

    Rapid compensatory evolution promotes the survival of conjugative plasmids

    Get PDF
    Conjugative plasmids play a vital role in bacterial adaptation through horizontal gene transfer. Explaining how plasmids persist in host populations however is difficult, given the high costs often associated with plasmid carriage. Compensatory evolution to ameliorate this cost can rescue plasmids from extinction. In a recently published study we showed that compensatory evolution repeatedly targeted the same bacterial regulatory system, GacA/GacS, in populations of plasmid-carrying bacteria evolving across a range of selective environments. Mutations in these genes arose rapidly and completely eliminated the cost of plasmid carriage. Here we extend our analysis using an individual based model to explore the dynamics of compensatory evolution in this system. We show that mutations which ameliorate the cost of plasmid carriage can prevent both the loss of plasmids from the population and the fixation of accessory traits on the bacterial chromosome. We discuss how dependent the outcome of compensatory evolution is on the strength and availability of such mutations and the rate at which beneficial accessory traits integrate on the host chromosome

    Measuring, Processing, and Analyzing Hysteresis Data

    Get PDF
    Magnetic hysteresis loops are important in theoretical and applied rock magnetism with applications to paleointensities, paleoenvironmental analysis, and tectonic studies, among many others. Information derived from these data is among the most ubiquitous rock magnetic data used by the Earth science community. Despite their prevalence, there are no general guidelines to aid scientists in obtaining the best possible data and no widely available software to allow the efficient analysis of hysteresis loop data using the most advanced and appropriate methods. Here we outline detrimental factors and simple approaches to measuring better hysteresis data and introduce a new software package called Hysteresis Loop analysis box (HystLab) for processing and analyzing loop data. Capable of reading a wide range of data formats, HystLab provides an easy‐to‐use interface allowing users to visualize their data and perform advanced processing, including loop centering, drift correction, high‐field slope corrections, and loop fitting to improve the results from noisy specimens. A large number of hysteresis loop properties and statistics are calculated by HystLab and can be exported to text files for further analysis. All plots generated by HystLab are customizable and user preferences can be saved for future use. In addition, all plots can be exported to encapsulated postscript files that are publication ready with little or no adjustment. HystLab is freely available for download at https://github.com/greigpaterson/HystLab and in combination with our simple measurement guide should help the paleomagnetic and rock magnetic communities get the most from their hysteresis data.G. A. P. acknowledges funding from a NERC Independent Research Fellowship (NE/P017266/1) and NSFC grants 41574063 and 41621004, and CAS project XDB18010203. M. J. acknowledges support of the Institute for Rock Magnetism, funded by the NSF Instruments and Facilities program and by the University of Minnesota. The data presented here are available with the HystLab software package (https:// github.com/greigpaterson/HystLab)

    Cost effectiveness of antimicrobial catheters in the intensive care unit: addressing uncertainty in the decision

    Get PDF
    Introduction: Some types of antimicrobial-coated central venous catheters (A-CVC) have been shown to be cost-effective in preventing catheter-related bloodstream infection (CR-BSI). However, not all types have been evaluated, and there are concerns over the quality and usefulness of these earlier studies. There is uncertainty amongst clinicians over which, if any, antimicrobial-coated central venous catheters to use. We re-evaluated the cost-effectiveness of all commercially available antimicrobialcoated central venous catheters for prevention of catheter-related bloodstream infection in adult intensive care unit (ICU) patients. Methods: We used a Markov decision model to compare the cost-effectiveness of antimicrobial-coated central venous catheters relative to uncoated catheters. Four catheter types were evaluated; minocycline and rifampicin (MR)-coated catheters; silver, platinum and carbon (SPC)-impregnated catheters; and two chlorhexidine and silver sulfadiazine-coated catheters, one coated on the external surface (CH/SSD (ext)) and the other coated on both surfaces (CH/SSD (int/ext)). The incremental cost per qualityadjusted life-year gained and the expected net monetary benefits were estimated for each. Uncertainty arising from data estimates, data quality and heterogeneity was explored in sensitivity analyses. Results: The baseline analysis, with no consideration of uncertainty, indicated all four types of antimicrobial-coated central venous catheters were cost-saving relative to uncoated catheters. Minocycline and rifampicin-coated catheters prevented 15 infections per 1,000 catheters and generated the greatest health benefits, 1.6 quality-adjusted life-years, and cost-savings, AUD 130,289.Afterconsideringuncertaintyinthecurrentevidence,theminocyclineandrifampicincoatedcathetersreturnedthehighestincrementalmonetarynetbenefitsof130,289. After considering uncertainty in the current evidence, the minocycline and rifampicin-coated catheters returned the highest incremental monetary net benefits of 948 per catheter; but there was a 62% probability of error in this conclusion. Although the minocycline and rifampicin-coated catheters had the highest monetary net benefits across multiple scenarios, the decision was always associated with high uncertainty. Conclusions: Current evidence suggests that the cost-effectiveness of using antimicrobial-coated central venous catheters within the ICU is highly uncertain. Policies to prevent catheter-related bloodstream infection amongst ICU patients should consider the cost-effectiveness of competing interventions in the light of this uncertainty. Decision makers would do well to consider the current gaps in knowledge and the complexity of producing good quality evidence in this area

    RNA Sequencing Reveals Novel Transcripts from Sympathetic Stellate Ganglia During Cardiac Sympathetic Hyperactivity.

    Get PDF
    Cardiovascular disease is the most prevalent age-related illness worldwide, causing approximately 15 million deaths every year. Hypertension is central in determining cardiovascular risk and is a strong predictive indicator of morbidity and mortality; however, there remains an unmet clinical need for disease-modifying and prophylactic interventions. Enhanced sympathetic activity is a well-established contributor to the pathophysiology of hypertension, however the cellular and molecular changes that increase sympathetic neurotransmission are not known. The aim of this study was to identify key changes in the transcriptome in normotensive and spontaneously hypertensive rats. We validated 15 of our top-scoring genes using qRT-PCR, and network and enrichment analyses suggest that glutamatergic signalling plays a key role in modulating Ca2+ balance within these ganglia. Additionally, phosphodiesterase activity was found to be altered in stellates obtained from the hypertensive rat, suggesting that impaired cyclic nucleotide signalling may contribute to disturbed Ca2+ homeostasis and sympathetic hyperactivity in hypertension. We have also confirmed the presence of these transcripts in human donor stellate samples, suggesting that key genes coupled to neurotransmission are conserved. The data described here may provide novel targets for future interventions aimed at treating sympathetic hyperactivity associated with cardiovascular disease and other dysautonomias
    corecore