5 research outputs found
Genome-Wide Association Study Using Genotyping by Sequencing for Bacterial Leaf Blight Resistance Loci in Local Thai Indica Rice
Bacterial leaf blight (BLB) is a devastating disease caused by Xanthomonas oryzae pv.
oryzae (Xoo), which poses a significant threat to global rice production. In this study, a genomewide
association study (GWAS) was conducted using the genotyping-by-sequencing (GBS) approach
to identify candidate single nucleotide polymorphisms (SNPs) associated with BLB resistance genes.
The study utilized 200 indica rice accessions inoculated with seven distinct Xoo isolates and filtered
highly significant SNPs using a minor allele frequency (MAF) of >5% and a call rate of 75%. Four
statistical models were used to explore potential SNPs associated with BLB resistance, resulting in
the identification of 32 significant SNPs on chromosomes 1–8 and 12 in the rice genome. Additionally,
179 genes were located within 100 kb of the SNP region, of which 49 were selected as candidate
genes based on their known functions in plant defense mechanisms. Several candidate genes were
identified, including two genes in the same linkage disequilibrium (LD) decay as the well-known BLB
resistance gene (Xa1). These findings represent a valuable resource for conducting further functional
studies and developing novel breeding strategies to enhance the crop’s resistance to this disease
Sampling for disease absence—deriving informed monitoring from epidemic traits
Monitoring for disease requires subsets of the host population to be sampled and tested for the pathogen. If all the samples return healthy, what are the chances the disease was present but missed? In this paper, we developed a statistical approach to solve this problem considering the fundamental property of infectious diseases: their growing incidence in the host population. The model gives an estimate of the incidence probability density as a function of the sampling effort, and can be reversed to derive adequate monitoring patterns ensuring a given maximum incidence in the population. We then present an approximation of this model, providing a simple rule of thumb for practitioners. The approximation is shown to be accurate for a sample size larger than 20, and we demonstrate its use by applying it to three plant pathogens: citrus canker, bacterial blight and grey mould
A Strain of an Emerging Indian Xanthomonas oryzae pv. oryzae Pathotype Defeats the Rice Bacterial Blight Resistance Gene xa13 Without Inducing a Clade III SWEET Gene and Is Nearly Identical to a Recent Thai Isolate
<p>The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) injects transcription activator-like effectors (TALEs) that bind and activate host “susceptibility” (S) genes important for disease. Clade III SWEET genes are major S genes for bacterial blight. The resistance genes xa5, which reduces TALE activity generally, and xa13, a SWEET11 allele not recognized by the cognate TALE, have been effectively deployed. However, strains that defeat both resistance genes individually were recently reported in India and Thailand. To gain insight into the mechanism(s), we completely sequenced the genome of one such strain from each country and examined the encoded TALEs. Strikingly, the two strains are clones, sharing nearly identical TALE repertoires, including a TALE known to activate SWEET11 strongly enough to be effective even when diminished by xa5. We next investigated SWEET gene induction by the Indian strain. The Indian strain induced no clade III SWEET in plants harboring xa13, indicating a pathogen adaptation that relieves dependence on these genes for susceptibility. The findings open a door to mechanistic understanding of the role SWEET genes play in susceptibility and illustrate the importance of complete genome sequence-based monitoring of Xoo populations in developing varieties with effective disease resistance.</p
Data_Sheet_1_RETRACTED: A Strain of an Emerging Indian Xanthomonas oryzae pv. oryzae Pathotype Defeats the Rice Bacterial Blight Resistance Gene xa13 Without Inducing a Clade III SWEET Gene and Is Nearly Identical to a Recent Thai Isolate.PDF
The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) injects transcription activator-like effectors (TALEs) that bind and activate host “susceptibility” (S) genes important for disease. Clade III SWEET genes are major S genes for bacterial blight. The resistance genes xa5, which reduces TALE activity generally, and xa13, a SWEET11 allele not recognized by the cognate TALE, have been effectively deployed. However, strains that defeat both resistance genes individually were recently reported in India and Thailand. To gain insight into the mechanism(s), we completely sequenced the genome of one such strain from each country and examined the encoded TALEs. Strikingly, the two strains are clones, sharing nearly identical TALE repertoires, including a TALE known to activate SWEET11 strongly enough to be effective even when diminished by xa5. We next investigated SWEET gene induction by the Indian strain. The Indian strain induced no clade III SWEET in plants harboring xa13, indicating a pathogen adaptation that relieves dependence on these genes for susceptibility. The findings open a door to mechanistic understanding of the role SWEET genes play in susceptibility and illustrate the importance of complete genome sequence-based monitoring of Xoo populations in developing varieties with effective disease resistance.</p