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Abstract

Monitoring for disease requires subsets of the host population to be sampled and tested
for the pathogen. If all the samples return healthy, what are the chances the disease
was present but missed? In this paper, we developed a statistical approach to solve
this problem considering the fundamental property of infectious diseases: their growing
incidence in the host population. The model gives an estimate of the incidence probability
density as a function of the sampling effort, and can be reversed to derive adequate
monitoring patterns ensuring a given maximum incidence in the population. We then
present an approximation of this model, providing a simple rule of thumb for practitioners.
The approximation is shown to be accurate for a sample size larger than 20, and we
demonstrate its use by applying it to three plant pathogens: citrus canker, bacterial
blight and grey mould.

Keywords Disease absence, Risk assessment, Early detection, Sampling theory
MSC 2010: 62D05, 92D30

Introduction 1

When it comes to disease management, surveillance programs have two different objec- 2

tives: establishing disease absence in host populations, or ensuring an early detection 3

of any disease outbreak (Parnell et al., 2017). Early detection is essential to disease 4

control mitigation, timely reactions generally being more successful and less detrimental 5

for the host population (Cunniffe et al., 2016). For example, Carpenter et al. (2011) 6

showed for foot-and-mouth disease, that when delaying the detection from 7 to 22 days 7

after the initial infection, the containment measures required the culling 30 times more 8

host animals. Likewise, surveillance programs are operated to establish the absence or 9

presence of emerging strains of endemic pathogens, hence enabling trade certifications for 10

instance. Examples of these are emerging strains of plant pathogens that are insensitive 11

to the fungicides applied to control them, or strains that are virulent1 in a crop cultivar 12

by having resistance breaking genes. 13

1We use here the plant pathology definition where virulence signifies the ability of the pathogen to
infect the host. In human and other animal pathology virulence is used as a measure of damage the
pathogen does to the host.
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Monitoring a disease requires the assessment of the pathological status of sampling 14

units. Assessments generally occur at the level of the host individual (e.g. for ash 15

dieback, Woodward & Boa, 2013), but sometimes for convenience the sampling unit is a 16

subpopulation like a farm (e.g. for foot-and-mouth disease, Keeling et al., 2001), or a 17

field (e.g. for bacterial blight in rice, Koyshibayev & Muminjanov, 2016). In any case, 18

when the samples all return negative, it is still very important to account for the chance 19

that the pathogen was present but undetected (Cannon, 2002). Therefore, declaring 20

disease absence is then a probabilistic evaluation, more samples making it less likely the 21

pathogen was missed. 22

The incidence2 of a pathogen, noted q hereafter, is the proportion of the host 23

population infected. Estimating the incidence from a sample where all assessments 24

return negative for the pathogen can be defined as a zero-numerator problem, i.e. 25

estimating the probability of an event from data in which it has not occurred yet (Hanley 26

& Lippman-Hand, 1983; Winkler et al., 2002). We thus want to calculate the probability 27

density, p(q|notfound), of the incidence q given that none of the sampling units is 28

assessed as infected. This can be done by deriving p(notfound|q) from the exponential 29

distribution, and then reversing it according to Bayes’ rule, assuming a uniform prior 30

p(q). A practically useful quantity is the incidence qX for which 31∫ qX

0

p(q|notfound)dq =
X

100
, (1)

thus giving the upper bound of the X% confidence interval of q. This upper limit gives 32

the highest, still likely, incidence given a sampling effort. The rule of three is a very 33

common rule of thumb to estimate the upper limit of the 95% confidence interval (Louis, 34

1981). For example, considering we have a random sample of size N , all returning 35

negative, the upper limit can be approximated by q95 = 3
N+1 (Hanley & Lippman-Hand, 36

1983). This very practical rule of thumb can be used to identify a sampling effort N 37

that can ensure that infection is below a threshold value. 38

To ensure pathogen absence from an area over an extended time interval, the host 39

population have to be sampled repeatedly. Incidence estimation should then account 40

for the change of incidence between the rounds caused by the epidemic dynamics. In 41

this regard, Metz et al. (1983) accounted for the time dependence of samples due to 42

the epidemic dynamics when they assessed the level of epidemic risk associated with 43

a given sampling effort. However, when it comes to the incidence estimation problem, 44

the epidemic temporal dynamics is neglected while the focus is more likely set on the 45

spatial dependences of the samples due to the epidemic spread (Cameron & Baldock, 46

1998; Cannon, 2002; Coulston et al., 2008). 47

Accounting for the epidemic dynamics, we address the incidence estimation problem 48

in the case of disease absence sampling (as Parnell et al., 2012, did with first discovery). 49

We present a model estimating the pathogen incidence in a population, being given a 50

sampling effort and an epidemic growth rate. We then derive an approximation of this 51

model (in the way of Alonso Chavez et al., 2016) providing a practical and simple way to 52

derive information from a negative sampling. This epidemically informed approximation 53

proves itself accurate and flexible enough to account for the asymptomatic period of 54

the disease. Finally, we apply this model to three case examples: citrus canker in an 55

orange orchard, the invasion of virulent pathogen strains of bacterial blight of rice and 56

the invasion of fungicide resistant pathogen strains in grey mould of grape. 57

2We use here the plant pathology definition where incidence is the fraction of host units infected. In
human and other animal pathology this is termed prevalence.
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Materials and methods 58

A monitoring program typically consists of batches of N samples randomly or regularly 59

distributed in space, and regularly iterated over K monitoring rounds with time intervals 60

of ∆ time units. Parnell et al. (2012) has shown how to use this particular structure 61

to derive the pathogen incidence when first detection occurs. In this section we use a 62

similar method to estimate the incidence when no infected sample has returned. 63

One monitoring round 64

Considering an incidence q in a population, the probability for a sample to return 65

negative is given by p(notfound|q) = 1 − q. A sample of size N will therefore return 66

entirely negative with probability: 67

p(notfound|q) = (1− q)N . (2)

Now, given a monitoring round returned negative, what does it tell us about q ? We can 68

derive p(q|notfound), the incidence given no detection, from p(notfound|q) using the 69

Bayes’ theorem. Bayes’ theorem relates those probabilities by: 70

p(q|notfound) =
p(q)p(notfound|q)∫ 1

0
p(q)p(notfound|q)dq

. (3)

The value p(q) is the prior probability density of q. Assuming no information on q, we 71

set p(q) to be a uniform and uninformative prior. Substituting Eq. 2 into Eq. 3 then 72

gives 73

p(q|notfound) = (N + 1)(1− q)N . (4)

As mentioned in the introduction, of particular interest is the upper limit of the X% 74

confidence interval given by Eq. 1 which, for the exponential distribution given by Eq. 75

4, gives 76

qX =
−ln(1−X/100)

N + 1
. (5)

Put in words, if we set a maximum incidence qX below which we are satisfied to consider 77

the host population to be free of disease, we can derive a sampling effort N , that will 78

ensure X% of the undetected diseases to have incidences smaller than qX . 79

Two monitoring rounds 80

Having two monitoring rounds can be seen as increasing the size of the sample: 81

p(notfound|q) = (1− q)N1(1− q)N2 = (1− q)N1+N2 (6)

where N2 is the size of the current monitoring round and N1 is the size of the previous 82

one. In this equation, the sizes of the historic and recent monitoring rounds are powers 83

of the same probability of negative sampling: 1 − q. However, as mentioned in the 84

introduction, the incidence of an infectious pathogen increases through time. Therefore, 85

non-detection in the last monitoring round occurred over a larger incidence than the 86

previous one. 87

As we are focused on absence sampling, we are interested in epidemics with low 88

incidences, so q � 1. It is well established that at low incidence epidemics grow 89

exponentially (van der Plank, 1963; Faria et al., 2014; Bartlett et al., 2016). We thus 90

assume q(t) = q(0)ert where t is the time and r is the epidemic growth rate. In the time 91
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interval ∆ between two monitoring rounds the pathogen incidence has grown by a factor 92

λ = er∆, or another words, the incidence in monitoring round i was a factor λ−1 smaller 93

than the incidence in monitoring round i+ 1. 94

For our two-round case we thus have 95

p(notfound|q) = (1− q)N2(1− λ−1q)N1 . (7)

K monitoring rounds 96

Building on this epidemic model, we can now generalise Eq. 7 to K monitoring rounds: 97

P (notfound|q) =
K∏
k=1

(
1− λ−k+1q

)N
. (8)

We can use the Bayes’ theorem to compute the probability density of the incidence given 98

non-detection after K monitoring rounds as: 99

P (q|notfound) =

K∏
k=1

(
1− λ−k+1q

)N
∫ 1

0

K∏
k=1

(
1− λ−k+1q

)N
dq

. (9)

An approximation 100

Computing the probability density given by Eq. 9, as well as the subsequent upper limit 101

qX , requires integrations which need to be approximated numerically. It is computa- 102

tionally inexpensive but still requires a computer program to be used. Here we develop 103

an approximation which makes the computation of p(q|notfound) simple enough to be 104

useful for practitioners. It gives a rule of thumb in planning a monitoring program for a 105

given disease. 106

The approximation is built on the following two assumptions: (1) the sampling size 107

N is large enough (N > 10), and (2) the incidence q is small. Both assumption are 108

realistic as 10 is a relatively small sampling size, and as we are interested only in cases 109

with very low incidence. Using our assumption that q � 1, we can approximate (1− q)N 110

by e−qN . Substituting this in Eq. (3) results in: 111

p(q|notfound) ≈ N

1− e−N
e−qN . (10)

And following our assumption that N > 10, this equation can be approximated by 112

p(q|notfound) ≈ Ne−qN , (11)

Plugging Eq. (11) into Eq. (1) results in 113

q̃X =
−ln(1−X/100)

N
. (12)

Similarly, for two monitoring rounds we find 114

p(q|notfound) = (N1 + λ−1N2)e−q(N1+λ−1N2) (13)

and 115
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q̃X =
−ln(1−X/100)

(N1 + λ−1N2)
. (14)

If now we generalise to K monitoring rounds, it results in 116

p(q|notfound) = Ae−qA (15)

and q̃X =
−ln(1−X/100)

A
(16)

where A is given by: 117

A =
K∑
k=1

λ−k+1N = N
λ− λ−K+1

λ− 1
(17)

Before going further using the approximation, its accuracy needs to be evaluated. 118

First, the approximated and the exact probability densities p(q|notfound) are compared 119

visually. And then, we investigate more carefully the difference between their respective 120

confidence intervals qX and q̃X . The comparison is likely to depend on the sampling 121

effort as well as on the epidemic growth rate, therefore the accuracy is evaluated for 122

wide ranges of the relevant parameters. 123

Results 124

The exact model 125

Figures 1 clearly shows the effect of an epidemic increase (i.e. λ > 1) as compared to a 126

situation, as previously published (see e.g. Cameron & Baldock, 1998; Cannon, 2002, for 127

absence sampling), where incidence q is assumed constant over time (i.e. λ = 1). Figures 128

1 exposes that using the classical rule of 3 for a monitoring program extended in time 129

would result in significant underestimations of q95, as it would for any confidence level. 130

The severity of these underestimations increases with the epidemic growth rate and 131

the time interval between rounds. As expected, the upper bound qX of the confidence 132

interval for q decreases with increasing sample size N and increasing number of sampling 133

rounds K. The faster the epidemic grows, the larger λ, and the larger qX , which is 134

also to be expected. What is less obvious but interesting to note is that if we compare 135

monitoring programs with the same sampling effort N ·K (lower left versus upper right 136

panels in Figure 1), we see that qX is lower for monitoring programs that are shorter 137

in time (smaller K). This finding is consistent for other parameter values. However in 138

reality we do require a monitoring program to extend over long period of time to ensure 139

pathogen absence for the entire period. 140

The impact of λ on the incidence can be decomposed to investigate the impact of 141

the growth rate r and the time interval between rounds ∆. Since they are defined by 142

λ = er∆, they have the same impact on disease incidence, which is illustrated by the 143

diagonal symmetry in Figure 2. This picture focus only on qX instead of the whole 144

probability density. Figure 2 also delineates a plateau for large values of λ, above which 145

a faster epidemic growth, or a larger monitoring time interval, does not significantly 146

increase the incidence of the undetected pathogen. This is also visible in Figure 1 where 147

the probability densities for λ = 10 and λ = 100 are very similar, despite the order of 148

magnitude change in λ. Finally, Figure 2 illustrates the greater impact of the sample 149

size N than the number of rounds K on the epidemic risk. 150
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Figure 1. Probability density of the incidence given by Eq. 9 depending on the sampling effort (size N
and repetition K) and on λ = er∆, the factor by witch the epidemic grows between two sampling rounds.
The dashed lines are the upper bounds qX the 95% confidence interval.

Accuracy of the approximation 151

In developing an approximation, our aims are twofold: (1) provide an equation featuring 152

the model behaviours described in the previous subsection, and (2) provide an equation 153

simple enough that it can be solved “on the back of an envelop” when designing a 154

monitoring program. Figure 3 compares, for the case with two monitoring rounds 155

(K = 2), the exact and approximated probability densities (respectively given by Eqs. 9 156

and 15). We see that the exact and approximated density curves are barely distinguishable 157

whatever the sampling size and epidemic speed. However, if we take a closer look at our 158

index of interest qX , we see that low values of N cause significant inaccuracy (figured 159

by the shaded areas). This illustrates why the approximation does not hold for N < 10. 160

Figure 3 also shows a tendency towards inaccuracy when the epidemic growth or the 161

monitoring intervals increase. 162

The effect of K (the number of sampling rounds) is better visualised if we focus on 163

the relative error between the approximated and exact upper bounds |q̃X−qX |qX
. Figure 4 164

confirms the trends previously observed: the accuracy increases with the sampling size 165

and decreases with the epidemic growth rate and time interval between samples. We see 166

that past N ≈ 20, good levels of accuracy of the approximation is achieved, even for 167

large epidemic growth rates. It also seems that going from K = 20 to K = 100 does not 168

improve the accuracy and we reach a plateau. Finally, the accuracy increases with the 169

likeliness of the event under study (here from 0.1% in bottom row to 5% for top row), 170
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Figure 2. Upper limits of the 95% confidence intervals, q95, as a function of the two components of λ,
i.e. the time interval between rounds ∆ and the epidemic growth rate r. The four panels show four sampling
efforts defined by K and N . The dashed black lines figure the λ = 10.

which is also illustrated by the shaded areas in Figure 3. 171

Applications 172

Having established that our approximation is accurate for sampling sizes N > 20, we 173

turn towards three applications of the model. However before this is possible we need to 174

discuss the asymptomatic period characteristic for most pathogens. 175

Accounting for an asymptomatic period 176

After infection, the host is not detectable for a duration of time that depends on the 177

pathogen species. This asymptomatic period is longer for visual assessment than for 178

molecular diagnostics, but exists for each assessment method. It corresponds to the 179

time needed by the host to develop detectable symptoms, i.e. outreaching a detection 180

threshold. Since we need to estimate the possible incidence of all infected hosts, and not 181

only of hosts with detectable infection, we need to take this asymptomatic period into 182

account. 183

During the asymptomatic period, the newly infected hosts, that are not yet detectable 184

as such, can still spread the pathogen. Therefore their impact on epidemics can be 185

considerable, especially in the early stage of the disease as illustrated by Figure 5. 186

Because of the exponential dynamics of the early epidemics, the difference between 187
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Figure 3. Exact and approximated probability densities of the incidence p(q|notfound) for two monitoring
rounds. The vertical lines show the 0.95 and 0.999 quantiles (indicating the upper bounds of the respective
confidence intervals). The exact qX is derived from the numerical integration of Eq. 9, while the approximated
q̃X is given by Eq. 15.

what we can observe, i.e. the detectable incidence q, and what is actually spreading the 188

pathogen, i.e. the total incidence qT , promptly becomes significant even for fairly short 189

asymptomatic periods. 190

Following the exponential model, the relation between the total incidence qT and the 191

detectable incidence q is given by: 192

qT = erσq, (18)

with σ the duration of the asymptomatic period. Unlike the exact solution, the approxi- 193

mation smoothly integrates this new epidemic trait. Eq. (15) and (16) become: 194

P (q|notfound) = (Ae−rσ)e−qT (Ae−rσ) (19)

and q̃X =
−ln(1−X/100)

A
erσ (20)

Application to three pathosystems 195

Our first example is citrus canker (caused by Xanthomonas axonopodis pv. citri). Citrus 196

canker can lead to severe losses in commercial citrus (Gottwald et al., 2002). This 197

pathogen has received considerable attention of plant pathology modellers (Parnell et al., 198
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2009; Potts et al., 2013; Neri et al., 2014). It causes lesions on the citrus fruits, stems and 199

leaves, which are diagnostic of pathogen presence during visual inspections. Parameter 200

ranges from literature are reported in Table 1. 201

Our second example, bacterial blight of rice (caused by Xanthomonas oryzae pv. 202

oryzae), is a serious threat to food security across the globe (Reddy, 1989; Dewa 203

et al., 2011). Breeders have introduced resistance genes into rice cultivars making them 204

absolutely resistant to bacterial blight. However the bacterial species can overcome the 205

resistance and evolve virulent strains. Monitoring programs to establish the absence of 206

virulent strains and/or for early detection of emerging virulence are under development. 207

Observations are done at the field level (rather than at the host level), usually from the 208

roadside. Therefore the relevant r value to use in the monitoring model is the landscape 209

scale growth rate (infection from field to field, noted rL), rather than the within field 210

one (infection from host to host, noted rF ). The parameters values for virulent strains 211

and an explanation of σ for this case are given in Table 1 and its subscript. 212

Our third example concerns grey mould (caused by Botrytis cinerea) a fungal plant 213

pathogen of grape (and countless many other hosts). The disease is controlled by 214

fungicide applications but the pathogen can evolve strains less sensitive or insensitive 215

to the fungicide. We consider here the case of insensitivity to Boscalid (a succinate 216

dehydrogenase inhibitor) to which resistance developed in Europe, Australia, the US 217

and South America. Monitoring consists of visits to a large number of grape fields and 218

sampling infections from host individual. Parameter ranges from literature are reported 219

in Table 1. 220
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Figure 5. Effect of the asymptomatic period on the incidence. Here this period (σ = 5 days) makes a
great difference between the detectable incidence q and the total incidence qT .

Although apparently very different in monitoring scale, the case study pathogens 221

can be reported on the same parameter space. Figure 6 locates the epidemics according 222

to their estimated parameters r and σ. The black crosses figure for each pathogen the 223

likely parameter values, as well as their uncertainty (i.e. a long segment shows high 224

variability of the parameter in our sources). If we want to ensure (with 95% confidence) 225

a maximum incidence of 5%, the dashed black contour guides the selection of adequate 226

monitoring effort. Following this curve, we see that this maximum risk can be ensured 227

for the bacterial blight (BB) with only N = 20 fields sampled every ∆ = 180 days. The 228

grey mould (GM) case needs a little more frequent monitoring rounds and/or hosts 229

sampled. On the other hand, citrus canker will require N = 100 trees to be sampled 230

every ∆ = 30 days, a significantly larger effort. 231

An interesting output of Figure 6 is the impact of parameter uncertainty on the 232

predicted incidence q95. For example, although the uncertainty in the σ parameter of 233

bacterial blight (BB) is substantial, it is of least concern because it is tangent to the 234

incidence slope (i.e. parallel to the contours). However, such level of uncertainty in 235

the σ of citrus canker would have cause the “CC black cross” to intersect with all the 236

contour lines, hence predicting a very wide and uninformative range of incidence q95. In 237

this way, we can quickly assess how input uncertainty will affect the model output, and 238

where more meticulous parameter estimations are required. 239

These three examples show that, with a combination of crude parameter estimations 240

and a simple calculation, its is possible to assess the monitoring frequency, ∆, and the 241

number of hosts to assess per round, N , that are necessary to establish the absence of a 242

pathogen. 243
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Table 1. Parameter ranges for the three pathosystem examples.

Minimum Maximum Unit Reference

Citrus Canker
r 0.0155 0.0212 day−1 Gottwald et al. (1989)

σ 7 117 day Vernière et al. (2003)

Rice Blight
rL 4.4 · 10−4 1.2 · 10−3 day−1 Mew et al. (1992)

σ† 0.01 0.05 day see subscript

Grey Mould
r 8.76 · 10−4 4.57 · 10−3 day−1 Leroch et al. (2011)

Angelini et al. (2014)

Esterio et al. (2017)

authors data

σ 0 200 day Mcclellan et al. (1973)

Nair et al. (1995)

Barnes & Shaw (2002)

† Bacterial blight causes rice tillers to turn yellowish. Fields are inspected from

outside, then more closely if looking suspicious. Detection then occurs if

infection reaches a threshold incidence qd. This defines the asymptomatic

period as σ = 1
rF
ln

(
qd
qm

)
, the time lag between strain emergence at individual

scale from mutation (at incidence qm), with rF the within field growth rate.

Data from Adhikari et al. (1994, 1999).

Discussion 244

The main course of action for infectious disease management resides in monitoring and 245

appropriate response to its outcome. An efficient disease management limits the wasteful 246

use of pesticides, hence reducing their environmental and health consequences while 247

securing their long-term efficiencies. Well-timed responses can also limit the unnecessary 248

culling of hosts (Carpenter et al., 2011; Cunniffe et al., 2015). In addition, monitoring 249

also benefits industries by enabling the certification of pathogen absence which is a 250

primary requirement in the trade of plant and animal produce. 251

Whether a species is absent or merely undetected is a recurrent question in ecology 252

(Mackenzie, 2005; Wintle et al., 2012). When it comes to pathogens, absence sampling 253

has been addressed according to epidemics specificities, notably with careful attention 254

to the spatial structure of the host populations (Cameron & Baldock, 1998; Coulston 255

et al., 2008). As Metz et al. (1983) did when evaluating the epidemic risk associated 256

with sampling efforts, we account for the epidemic progress between monitoring rounds 257

in our incidence estimation model. Such consideration is essential as we have shown here 258

that assuming a constant incidence over the whole monitoring period leads to severe 259

underestimations of the epidemic progress. 260

That an epidemiologically informed monitoring proves itself superior to a purely 261

statistical tool like the rule of three is no surprise. Simulation-based approaches are often 262

thoroughly fed with epidemiological knowledge and, so being, have been able to shed 263

light on various aspects of specific diseases like e.g. optimal culling ranges (Bates et al., 264

2003a,b) or economic impacts (Carpenter et al., 2011) for the foot-and-mouth disease. 265

However, such highly specific solutions are not readily valuable for distinct problems. 266

Practical use requires generic tools that are easily accessible and can be straightforwardly 267

applied to observations. Here we propose such a tool in the form of a simple formula, 268
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Figure 6. Upper bound of the 95% confidence interval of the incidence, q95, depending on the epidemic growth rate r, and the asymptomatic
period σ. The contours show the incidence levels whose values are reported on the the log-transformed colour scale bar on the right. The dashed lines
figures the 5% maximum incidence. The black crosses figure the likely parameter ranges for citrus canker (CC), bacterial blight (BB) and grey mould
(GM).

our approximation, which relates a sampling effort to two critical epidemic traits in the 269

form of parameters, namely the growth rate and the asymptomatic period. A subsequent 270

interesting property of our model is that the derived sampling effort can be decomposed 271

in terms of N , K and ∆, and hence achieved with diverse programs. 272

It is worth keeping in mind that epidemiologically informed approaches are constrained 273

by the accuracy of the epidemic parameter estimates (Hyatt-Twynam et al., 2017). If 274

our objective is to predict the outcome of an ongoing disease outbreak, parameter 275

estimation must closely follow the detection events, which is often impractical (see 276

e.g. Neri et al., 2014). On the other hand, when sampling for disease absence, no 277

observation of the ongoing epidemic exists yet. Parameter estimation is therefore taken 278

from previous occurrences of the epidemic, and possibly from different areas with different 279

environments, or even different hosts species. Occasionally, parameter estimation might 280

also be attempted from outbreaks of a similar disease. Obviously, the cost of widening 281

the origins of observations is an increasing uncertainty on the model outputs. It is then 282

imperative to assess whether or not very crude parameter estimates are acceptable. This 283

can be done conveniently with representations like Figure 6. 284
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Our estimation model relies on the strong hypothesis of the uniformity of p(q): all 285

incidences are equally likely to be found in the population. More precisely, in our case, 286

the uniformity of p(q) is ensured at the time of estimation, i.e. at the last sampling 287

round. A more common approach consists in ensuring p(q) uniformity at the first 288

sampling round, calculating a posterior distribution using Bayes’ rule and then using 289

that posterior as prior for the second sample, etc. However, this would not lead to a 290

simple explicit equation like the one we provide, hence limiting its practical use. In 291

both cases, the uniformity of p(q) seems a bold assumption, as we know that low level 292

incidences are more commonly encountered during monitoring. Nonetheless, assuming 293

uniform p(q) is a conservative choice, as it biases the estimation towards the safest side: 294

the overestimation of the disease progress. 295

The model we present here is informed by the temporal dynamics of epidemics. 296

Whether it remains accurate when space becomes part of the system is not obvious, 297

and at some point is likely to depend on host spatial distribution. For example if hosts 298

are clustered in fields, the pathogen dispersion scale and the distance between fields 299

will determine whether or not an epidemic complies with the logistic model underlying 300

this study. Consequently, a direct comparison of our analytical results to spatially 301

explicit simulations should be conducted. In such numerical experiments not only the 302

epidemic but also the sampling process becomes spatially structured, hence breaking the 303

assumption of independent sampling. The robustness of our model in these conditions 304

would therefore be a solid confirmation of its practical value. 305

Conclusion 306

Non-detection is a possible outcome of monitoring programs, but it is an informative 307

one and it can be rendered into a robust risk assessment. Our approximation provides a 308

simple but reliable estimation of pathogen incidence given a sampling effort. It can also 309

be used to derive an appropriate monitoring program for a pathogen, providing that 310

epidemic traits are coarsely known. As it directly builds on elementary parameters of 311

monitoring and epidemic models, this tool can be intuitively adapted to diverse situations 312

as shown by our three examples. 313
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