20 research outputs found

    The Grizzly, April 10, 2014

    Get PDF
    Greek Week to Wrap up on Sunday • Relay for Life Focuses on Participation This Year • Financial Aid, Interest, Preparedness in Focus as National Decline in Enrollment Continues • At CoSA, 341 Students to Present This Year • Bikeshare Kicks Off New Cycling Season • Taiko Drum and Dance Group to Perform Sold-Out Show • Student Athlete on a Mission • Opinion: Not Black Enough, Not White Enough; Using Study Drugs is Dangerous and Unfair • Northwestern Football Faces Landmark Decision • UC Quarterback Balances Biology and Starting Spot • Tough Weekend for Many UC Teamshttps://digitalcommons.ursinus.edu/grizzlynews/1903/thumbnail.jp

    Climate Variability, Social and Environmental Factors, and Ross River Virus Transmission: Research Development and Future Research Needs

    Get PDF
    Background: Arbovirus diseases have emerged as a global public health concern. However, the impact of climatic, social and environmental variability on the transmission of arbovirus diseases remains to be determined. Objective: We provided an overview of research development and future research directions about the inter-relationship between climate variability, social and environmental factors and the transmission of Ross River virus (RRV) – the most common and widespread arbovirus disease in Australia. Methods: We conducted a systematic literature search on climatic, social and environmental factors and RRV disease. Potentially relevant studies were identified from a series of electronic searches. Databases searched were the MEDLINE (via EBSCOhost), Current Contents Connect (via ISI Web of Knowledge) and ScienceDirect. We critically reviewed key predictors of RRV transmission through an integration of our own research with literature. Results: The body of evidence reveals that the transmission cycles of RRV disease appeared to be sensitive to climate variability. Rainfall, temperature and high tides were among major determinants of the transmission of RRV disease at macro level. However, the nature and magnitude of the inter-relationship between climate variability, mosquito density and the transmission of RRV disease varied with geographic area and socio-environmental condition. Projected anthropogenic global climatic change may result in an increase in RRV infections. Conclusions: The analysis indicates that there is a complex relationship between climate variability, social and environmental factors and Ross River virus transmission. Different strategies should be adopted for the control and prevention of Ross River virus disease at different levels. These research findings could be used as an additional tool to support decision-making in disease control/surveillance and risk management

    Evaluation of forest canopy models for estimating isoprene emissions

    Full text link
    During the summer of 1992, isoprene emissions were measured in a mixed deciduous forest near Oak Ridge, Tennessee. Measurements were aimed at the experimental scale-up of emissions from the leaf level to the forest canopy to the mixed layer. Results from the scale-up study are compared to different canopy models for determining the leaf microclimate as input to isoprene emission algorithms. These include (1) no canopy effects, (2) a simple vertical scaling canopy model with a leaf energy balance, and (3) a numerical canopy model which accounts for leaf-sun geometries, photosynthesis, respiration, transpiration, and gas transport in the canopy. Initial evaluation of the models was based upon a standard emission rate factor of 90 μgC g-1 hr-1 (0.42 nmol g-1 s-1) taken from leaf cuvette measurements and a biomass density factor of 203 g m-2 taken from biomass surveys and a flux footprint analysis. The results indicated that predicted fluxes were consistent among the models to within approximately ±20%, but that the models overestimated the mean flux by about a factor of 2 and overestimated the maximum observed flux by 30 to 50%. Adjusting the standard emission factor and biomass density each downward by 20% yielded predicted means approximately 20% greater than the observed means and predicted maxima approximately 25% less than the observed maxima. Accounting for changes in biomass density as a function of direction upwind of the tower improved the overall model performance

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Abstract

    No full text
    A key advantage of Autonomic Computing Systems will be their ability to manage according to business policies. A key challenge to realizing this ability is the problem of automatically translating high-level business policies into low-level system tuning policies, which is the result of the different semantics used at the two levels. Economic models, which are expressed using business level concepts, have been used successfully in computer resource allocation problems. In this paper, we utilize an economic model to map business policies to resource allocation decisions in a database management system (DBMS). We focus on business policies that describe the relative importance of competing workloads on a DBMS. We present experiments with a simulation of the model that investigate a number of meanings of importance and identify how this additional information can be used to effectively allocate main memory resources in a commercial DBMS. 1

    VviPLATZ1 is a major factor that controls female flower morphology determination in grapevine

    No full text
    International audiencePlant genetic sex determinants that mediate the transition to dioecy are predicted to be diverse, as this type of mating system independently evolved multiple times in angiosperms. Wild Vitis species are dioecious with individuals producing morphologically distinct female or male flowers; whereas, modern domesticated Vitis vinifera cultivars form hermaphrodite flowers capable of self-pollination. Here, we identify the VviPLATZ1 transcription factor as a key candidate female flower morphology factor that localizes to the Vitis SEX-DETERMINING REGION. The expression pattern of this gene correlates with the formation reflex stamens, a prominent morphological phenotype of female flowers. After generating CRISPR/Cas9 geneedited alleles in a hermaphrodite genotype, phenotype analysis shows that individual homozygous lines produce flowers with reflex stamens. Taken together, our results demonstrate that loss of VviPLATZ1 function is a major factor that controls female flower morphology in Vitis

    A global model of natural volatile organic compound emissions

    No full text
    Numerical assessments of global air quality and potential changes in atmospheric chemical constituents require estimates of the surface fluxes of a variety of trace gas species. We have developed a global model to estimate emissions of volatile organic compounds from natural sources (NVOC). Methane is not considered here and has been reviewed in detail elsewhere. The model has a highly resolved spatial grid (0.5° × 0.5° latitude/longitude) and generates hourly average emission estimates. Chemical species are grouped into four categories: isoprene, monoterpenes, other reactive VOC (ORVOC), and other VOC (OVOC). NVOC emissions from oceans are estimated as a function of geophysical variables from a general circulation model and ocean color satellite data. Emissions from plant foliage are estimated from ecosystem specific biomass and emission factors and algorithms describing light and temperature dependence of NVOC emissions. Foliar density estimates are based on climatic variables and satellite data. Temporal variations in the model are driven by monthly estimates of biomass and temperature and hourly light estimates. The annual global VOC flux is estimated to be 1150 Tg C, composed of 44% isoprene, 11% monoterpenes, 22.5% other reactive VOC, and 22.5% other VOC. Large uncertainties exist for each of these estimates and particularly for compounds other than isoprene and monoterpenes. Tropical woodlands (rain forest, seasonal, drought-deciduous, and savanna) contribute about half of all global natural VOC emissions. Croplands, shrublands and other woodlands contribute 10–20% apiece. Isoprene emissions calculated for temperate regions are as much as a factor of 5 higher than previous estimates
    corecore