76 research outputs found

    Multi-year salutary effects of windstorm and fire on river cane

    Get PDF
    Canebrakes are monodominant stands of cane (Arundinaria gigantea [Walter] Muhl.), a bamboo native to and once prominent in the southeastern USA. Canebrakes were important wildlife habitat within the bottomland hardwood forest ecosystem. They have been reduced in areal coverage by an estimated 98% since European settlement due to land conversion and the drastic alteration of disturbance regimes in their floodplain habitat. Ongoing canebrake restoration efforts are hampered by incomplete understanding of the role of natural disturbance in cane ecology. We used a large tornado blow down and multiple prescribed fires to quantify the response of cane to the sequential disturbances of windstorm and fire in the Tensas Watershed of northeastern Louisiana using number and condition of bamboo stems (culms) as response variables. We hypothesized that culms would be more abundant in burned than in unburned stands and that culm populations in burned stands would be younger than in unburned stands. In this study, conducted four years post fire, effects of both windstorm and burning were additive and beneficial. Results indicate that periodic aboveground disturbance has three salutary effects on cane ramet demography: 1) clonal growth following disturbances more than compensates for any culms killed; 2) the cohort of new culms is younger than the culms they replace; and 3) disturbance appears to inoculate some cane stands for several years against local die-offs. Fire is a valuable tool for canebrake management. By periodically resetting cane stands, fires and other disturbances may have played a key role in canebrake formation and persistence over time

    Infinite barbarians

    Get PDF
    This paper discusses an infinite regress that looms behind a certain kind of historical explanation. The movement of one barbarian group is often explained by the movement of others, but those movements in turn call for an explanation. While their explanation can again be the movement of yet another group of barbarians, if this sort of explanation does not stop somewhere we are left with an infinite regress of barbarians. While that regress would be vicious, it cannot be accommodated by several general views about what viciousness in infinite regresses amounts to. This example is additional evidence that we should prefer a pluralist approach to infinite regresses

    Groundcover community assembly in high-diversity pine savannas: seed arrival and fire-generated environmental filtering

    Get PDF
    Environmental filtering—abiotic and biotic constraints on the demographic performance of individual organisms—is a widespread mechanism of selection in communities. A given individual is “filtered out” (i.e., selectively removed) when environmental conditions or disturbances like fires preclude its survival and reproduction. Although interactions between these filters and dispersal from the regional species pool are thought to determine much about species composition locally, there have been relatively few studies of dispersal × filtering interactions in species-rich communities and fewer still where fire is also a primary selective agent. We experimentally manipulated dispersal and filtering by fire (pre-fire fuel loads and post-fire ash) in species-rich groundcover communities of the longleaf pine ecosystem. We tested four predictions: (1) That species richness would increase with biologically realistic dispersal (seed addition); (2) that the immediate effect of increased fuels in burned communities would be to decrease species richness, whereas the longer-term effects of increased fuels would be to open recruitment opportunities in the groundcover, increase species richness, and increase individual performance (growth) of immigrating species; (3) that adding ash would increase species richness; and (4) that increased dispersal would generate larger increases in species richness in plots with increased fuels compared to plots with decreased fuels. We found that dispersal interacted with complex fire-generated filtering during and after fires. Dispersal increased species richness more in burned communities with increased and decreased fuels compared to burned controls. Moreover, individuals of immigrating species generally grew to larger sizes in burned communities with increased fuels compared to burned controls. In contrast to dispersal and fuels, ash had no effect on species richness directly or in combination with other treatments. We conclude that filtering occurs both during fires and in the post-fire environment and that these influences interact with dispersal such that the consequences are only fully revealed when all are considered in combination. Our experiment highlights the importance of considering the dynamic interplay of dispersal and selection in the assembly of species-rich communities

    Does pyrogenicity protect burning plants?

    Get PDF
    Pyrogenic plants dominate many fire-prone ecosystems. Their prevalence suggests some advantage to their enhanced flammability, but researchers have had difficulty tying pyrogenicity to individual-level advantages. Based on our review, we propose that enhanced flammability in fire-prone ecosystems should protect the belowground organs and nearby propagules of certain individual plants during fires. We base this hypothesis on five points: (1) organs and propagules by which many fire-adapted plants survive fires are vulnerable to elevated soil temperatures during fires; (2) the degree to which burning plant fuels heat the soil depends mainly on residence times of fires and on fuel location relative to the soil; (3) fires and fire effects are locally heterogeneous, meaning that individual plants can affect local soil heating via their fuels; (4) how a plant burns can thus affect its fitness; and (5) in many cases, natural selection in fire-prone habitats should therefore favor plants that burn rapidly and retain fuels off the ground. We predict an advantage of enhanced flammability for plants whose fuels influence local fire characteristics and whose regenerative tissues or propagules are affected by local variation in fires. Our pyrogenicity as protection hypothesis has the potential to apply to a range of life histories. We discuss implications for ecological and evolutionary theory and suggest considerations for testing the hypothesis. © 2010 by the Ecological Society of America

    Fuels and fires influence vegetation via above- and below-ground pathways in a high-diversity plant community

    Get PDF
    1. Fire strongly influences plant populations and communities around the world, making it an important agent of plant evolution. Fire influences vegetation through multiple pathways, both above- and belowground. Few studies have yet attempted to tie these pathways together in a mechanistic way through soil heating even though the importance of soil heating for plants in fire-prone ecosystems is increasingly recognized. 2. Here we combine an experimental approach with structural equation modelling (SEM) to simultaneously examine multiple pathways through which fire might influence herbaceous vegetation. In a high-diversity longleaf pine groundcover community in Louisiana, USA, we manipulated fine-fuel biomass and monitored the resulting fires with high-resolution thermocouples placed in vertical profile above- and belowground. 3. We predicted that vegetation response to burning would be inversely related to fuel load owing to relationships among fuels, fire temperature, duration and soil heating. 4. We found that fuel manipulations altered fire properties and vegetation responses, of which soil heating proved to be a highly accurate predictor. Fire duration acting through soil heating was important for vegetation response in our SEMs, whereas fire temperature was not. 5. Our results indicate that in this herbaceous plant community, fire duration is a good predictor of soil heating and therefore of vegetation response to fire. Soil heating may be the key determinant of vegetation response to fire in ecosystems wherein plants persist by resprouting or reseeding from soil-stored propagules. 6. Synthesis. Our SEMs demonstrate how the complex pathways through which fires influence plant community structure and dynamics can be examined simultaneously. Comparative studies of these pathways across different communities will provide important insights into the ecology, evolution and conservation of fire-prone ecosystems

    Resilient networks of ant-plant mutualists in amazonian forest fragments

    Get PDF
    Background: The organization of networks of interacting species, such as plants and animals engaged in mutualisms, strongly influences the ecology and evolution of partner communities. Habitat fragmentation is a globally pervasive form of spatial heterogeneity that could profoundly impact the structure of mutualist networks. This is particularly true for biodiversity-rich tropical ecosystems, where the majority of plant species depend on mutualisms with animals and it is thought that changes in the structure of mutualist networks could lead to cascades of extinctions. Methodology/Principal Findings: We evaluated effects of fragmentation on mutualistic networks by calculating metrics of network structure for ant-plant networks in continuous Amazonian forests with those in forest fragments. We hypothesized that networks in fragments would have fewer species and higher connectance, but equal nestedness and resilience compared to forest networks. Only one of the nine metrics we compared differed between continuous forest and forest fragments, indicating that networks were resistant to the biotic and abiotic changes that accompany fragmentation. This is partially the result of the loss of only specialist species with one connection that were lost in forest fragments. Conclusions/Significance: We found that the networks of ant-plant mutualists in twenty-five year old fragments are similar to those in continuous forest, suggesting these interactions are resistant to the detrimental changes associated with habitat fragmentation, at least in landscapes that are a mosaic of fragments, regenerating forests, and pastures. However, ant-plant mutualistic networks may have several properties that may promote their persistence in fragmented landscapes. Proactive identification of key mutualist partners may be necessary to focus conservation efforts on the interactions that insure the integrity of network structure and the ecosystems services networks provide. © 2012 Passmore et al

    Regulation of RasGRP via a Phorbol Ester-Responsive C1 Domain

    Get PDF
    As part of a cDNA library screen for clones that induce transformation of NIH 3T3 fibroblasts, we have isolated a cDNA encoding the murine homolog of the guanine nucleotide exchange factor RasGRP. A point mutation predicted to prevent interaction with Ras abolished the ability of murine RasGRP (mRasGRP) to transform fibroblasts and to activate mitogen-activated protein kinases (MAP kinases). MAP kinase activation via mRasGRP was enhanced by coexpression of H-, K-, and N-Ras and was partially suppressed by coexpression of dominant negative forms of H- and K-Ras. The C terminus of mRasGRP contains a pair of EF hands and a C1 domain which is very similar to the phorbol ester- and diacylglycerol-binding C1 domains of protein kinase Cs. The EF hands could be deleted without affecting the ability of mRasGRP to transform NIH 3T3 cells. In contrast, deletion of the C1 domain or an adjacent cluster of basic amino acids eliminated the transforming activity of mRasGRP. Transformation and MAP kinase activation via mRasGRP were restored if the deleted C1 domain was replaced either by a membrane-localizing prenylation signal or by a diacylglycerol- and phorbol ester-binding C1 domain of protein kinase C. The transforming activity of mRasGRP could be regulated by phorbol ester when serum concentrations were low, and this effect of phorbol ester was dependent on the C1 domain of mRasGRP. The C1 domain could also confer phorbol myristate acetate-regulated transforming activity on a prenylation-defective mutant of K-Ras. The C1 domain mediated the translocation of mRasGRP to cell membranes in response to either phorbol ester or serum stimulation. These results suggest that the primary mechanism of activation of mRasGRP in fibroblasts is through its recruitment to diacylglycerol-enriched membranes. mRasGRP is expressed in lymphoid tissues and the brain, as well as in some lymphoid cell lines. In these cells, RasGRP has the potential to serve as a direct link between receptors which stimulate diacylglycerol-generating phospholipase Cs and the activation of Ras

    Mps1Mph1 kinase phosphorylates Mad3 to inhibit Cdc20Slp1-APC/C and maintain spindle checkpoint arrests

    Get PDF
    <div><p>The spindle checkpoint is a mitotic surveillance system which ensures equal segregation of sister chromatids. It delays anaphase onset by inhibiting the action of the E3 ubiquitin ligase known as the anaphase promoting complex or cyclosome (APC/C). Mad3/BubR1 is a key component of the mitotic checkpoint complex (MCC) which binds and inhibits the APC/C early in mitosis. Mps1<sup>Mph1</sup> kinase is critical for checkpoint signalling and MCC-APC/C inhibition, yet few substrates have been identified. Here we identify Mad3 as a substrate of fission yeast Mps1<sup>Mph1</sup> kinase. We map and mutate phosphorylation sites in Mad3, producing mutants that are targeted to kinetochores and assembled into MCC, yet display reduced APC/C binding and are unable to maintain checkpoint arrests. We show biochemically that Mad3 phospho-mimics are potent APC/C inhibitors <i>in vitro</i>, demonstrating that Mad3p modification can directly influence Cdc20<sup>Slp1</sup>-APC/C activity. This genetic dissection of APC/C inhibition demonstrates that Mps1<sup>Mph1</sup> kinase-dependent modifications of Mad3 and Mad2 act in a concerted manner to maintain spindle checkpoint arrests.</p></div

    Afri-Can Forum 2

    Full text link
    • 

    corecore