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Abstract

Background: The organization of networks of interacting species, such as plants and animals engaged in mutualisms,
strongly influences the ecology and evolution of partner communities. Habitat fragmentation is a globally pervasive form of
spatial heterogeneity that could profoundly impact the structure of mutualist networks. This is particularly true for
biodiversity-rich tropical ecosystems, where the majority of plant species depend on mutualisms with animals and it is
thought that changes in the structure of mutualist networks could lead to cascades of extinctions.

Methodology/Principal Findings: We evaluated effects of fragmentation on mutualistic networks by calculating metrics of
network structure for ant-plant networks in continuous Amazonian forests with those in forest fragments. We hypothesized
that networks in fragments would have fewer species and higher connectance, but equal nestedness and resilience
compared to forest networks. Only one of the nine metrics we compared differed between continuous forest and forest
fragments, indicating that networks were resistant to the biotic and abiotic changes that accompany fragmentation. This is
partially the result of the loss of only specialist species with one connection that were lost in forest fragments.

Conclusions/Significance: We found that the networks of ant-plant mutualists in twenty-five year old fragments are similar
to those in continuous forest, suggesting these interactions are resistant to the detrimental changes associated with habitat
fragmentation, at least in landscapes that are a mosaic of fragments, regenerating forests, and pastures. However, ant-plant
mutualistic networks may have several properties that may promote their persistence in fragmented landscapes. Proactive
identification of key mutualist partners may be necessary to focus conservation efforts on the interactions that insure the
integrity of network structure and the ecosystems services networks provide.
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Introduction

While there is much to be learned about the dynamics of

mutualisms from the study of pair-wise interactions [1], there has

been an upsurge of interest in how the analysis of multi-species

networks can enhance our understanding of these pivotal

interactions [2,3]. A network-focused approach has revealed that

networks of plant-animal mutualists tend to be highly nested –

both generalist and specialist species tend to interact with

generalists [4,5,6]. They are also likely to be built on weak and

asymmetric links, meaning a plant species that is very dependent

on a particular animal species is only weakly depended on by that

animal species [4,7]. Understanding these and other properties of

network structure can not only provide insights into the assembly

and evolution of species interactions, but can also provide unique

insights into community responses to anthropogenic disturbances

such as habitat loss and species extinctions [8,9,10].

Despite these advances, however, most studies of mutualist

networks fail to consider the complexity of the landscape in which

these communities are embedded [8,9]. For instance, habitat

fragmentation is a globally pervasive form of landscape alteration

that could profoundly impact network topology [8,9]. Recent

modeling efforts support this hypothesis. In simulations Morales &

Vazquez [11] found that networks in spatially explicit landscapes

had lower connectance, higher asymmetry, and less-predictable

interactions when species were aggregated and animal mobility

was limited. In contrast, Fortuna & Bascompte [12] found there

was a threshold of habitat loss at which mutualistic networks

ultimately collapsed. Despite the major implications of these results

for the maintenance of biodiversity and ecosystem services in

fragmented landscapes, empirical evaluations of these predictions

are limited. Sabatino et al. [13] compared pollination networks

found in isolated hills embedded in an agricultural matrix and

found that there was a strong positive effect of fragment area on

species richness and link number, while Piazzon et al. [14] found

topological differences between the epiphyte-tree networks found

in old-growth and disturbed forests sites. It is particularly notable,

however, that it is virtually unknown how fragmentation influences
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network structure in biodiversity-rich tropical ecosystems (al-

though at least one study has been conducted in Chaco forest

[15]). Because the vast majority of plant species there are

dependent on mutualisms with animals [16], it is thought that

changes in the structure of mutualist communities could lead to

cascades of extinctions in these increasingly fragmented landscapes

[17].

Mutualisms between ants and specialized plants known as

myrmecophytes are a defining feature of tropical forests [18].

Plants from over 100 genera have leaf pouches, swollen petioles,

hollow stems, or other ‘domatia’ in which a suite of obligately

associated ant species establish colonies. Resident ants defend their

host plants from herbivores or competitors, and the loss of ant

colonies can results in severe defoliation or plant death [19,20].

Since the pioneering work of Janzen [21], ant-plant communities

have become model systems to study the ecology and evolution of

mutualisms, mechanisms promoting species coexistence, and

trophic cascades [18,19].

We evaluated the effect of habitat fragmentation on the

structure of mutualistic networks using the community of ant-

plant partners found in an experimentally fragmented landscape in

the central Amazon. By comparing these networks in continuous

forest sites with those in forest fragments, we provide the first

empirical test of the effects of habitat fragmentation on network

structure that have been put forward in prior theoretical and

empirical work. To do so, we begin by comparing the diversity of

ants and plants in fragments and continuous forest. Because

species diversity of both plants and animals decreases in tropical

forest fragments [22,23] we predicted that fragments will have

fewer species of mutualist plants and ants (i.e., fewer nodes) than

continuous forest sites. We then predict these changes will have the

following influence on network structure. First, because highly

specialized species are especially prone to extinction, connectance

(i.e., the ratio of actual to possible links) will be higher in networks

in fragmented sites [24]. This disproportionate loss of specialists is

also why we predict that nestedness, specifically weighted-

interaction nestedness [25], will not differ significantly between

intact forest and fragments. This prediction stems from the

observation that the loss of specialized species from fragments [26]

has less of an effect on nestedness than the loss of well-connected

generalists [27,28,29]. Finally, we tested the prediction that

communities of ant-plant partners in fragments will be less

‘‘robust’’, i.e., tolerant to the extinction of individual species,

despite the increased connectance resulting from the loss of

specialists [24].

Materials and Methods

Ethics Statement
All necessary permits were obtained for the described field

studies. All research was conducted with the approval of Brazil’s

National Council of Scientific and Technological Development

(CNPq, Permit Number 276/2005) and the Brazilian Institute of

Environment and Renewable Natural Resources (IBAMA, Permit

Number 226/2005).

Study sites and data collection
We conducted our study in the lowland tropical forests of

Brazil’s Biological Dynamics of Forest Fragments Project (BDFFP;

2u309S, 60uW). From October 2001 to February 2002, we

conducted surveys of the comprehensively described ant-plant

mutualist community [30] found in four of the BDFFP’s

experimentally isolated 1-ha forest fragments (FF) and four

continuous forest (CF) sites [31]. The fragments were isolated in

the early 1980s and have been maintained isolated by regularly

clearing a 100 m band of secondary growth surrounding the

fragments. The habitat is non-flooded lowland forest with a 30–

35 m tall canopy, an understory dominated by stemless palms, and

rugged topography ranging from 50–150 m in elevation. Soils in

the sites are highly acidic and nutrient poor xanthic ferralsols with

poor water retention capacity [32]. Annual rainfall ranges from

1,900–3,500 mm per year, and there is a pronounced dry season

from June–October. Details of the BDFFP’s design, history, and

biology can be found in Bierregaard et al. [33].

In each of our eight study sites we established a 100 m6100 m

plot in which we mapped all ant-plants and recorded the presence

and identity of ant colonies in their domatia; vouchers of plants

and ants were collected to confirm identifications. Here we analyze

the network connections between the 12 myrmecophytes we

recorded in our surveys and the 10 obligate ant species associated

with them reported in [31]. Note that as in our prior work [31] we

considered all Azteca species as a single taxon because of

unresolved taxonomy of this group. We also pooled all Pouruma

(Cecropiaceae) into a single taxon because of the difficulty in

classifying individuals to species with floral characters and no

individuals were fertile during our surveys. Finally, difficulty in

distinguishing among juvenile Tachigali trees led us to exclude

smaller individuals found in two CF plots (N = 4 individuals total)

and two FF plots (N = 12 individuals), although all adult trees were

readily identified.

Analytical Methods
Hypotheses about network structure can be addressed using

both qualitative and quantitative approaches. Qualitative metrics

are calculated from binary interaction matrices while quantitative

metrics include information on the frequency of individual

interactions. Qualitative metrics are still commonly used to study

networks, and hence they are useful for comparing the results of

our work with those of other studies. However, the frequency of an

interaction between species is an important measure of its strength

and hence importance [4]. In addition, quantitative descriptors

have been found to be more robust to variable sampling efforts

than qualitative ones [34,35]. We therefore use both qualitative

and quantitative approaches to test our hypotheses. We calculated

all metrics using the R package Bipartite [36,37], with the

exception of the frequency-based weighted nestedness estimator

for which we used the program WINE [V 3.2, 25 see Table 1 for

the formulas used for all metrics]. Finally, we pooled data from all

plots in a habitat class to construct a summary network and

calculate the same metrics of network structure (sensu [38]).

To determine if ant and plant species richness was lower in

fragments (Hypothesis 1), we compared the number of ant and

plant species in the networks. We then tested whether there were

fewer realized interactions between ants and plants in fragments

(i.e., connectance is higher in fragments, Hypothesis 2) by

comparing the number of links per species, network connectance

(both qualitative), and linkage density (quantitative) for each

treatment with separate one-way ANOVAs. Because there is the

potential for correlation among different metrics of network

structure [39], we used a Bonferroni-adjusted alpha of 0.025 to

assess the significance of the two qualitative measures. Next, to

determine whether nestedness was similar between forest types

(Hypothesis 3) we calculated the quantitative and qualitative

versions of the network nestedness metric (Table 1) and again

compared the treatments with one way-ANOVA.

Finally, to test if networks in fragments and continuous forest

were equally resilient to disturbance (Hypothesis 4) we calculated

the network robustness (R) to simulated extinction of ant or plant
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species (Table 1). The quantitative measure of robustness, R, is the

area under the extinction curve (the attack tolerance curve or

ATC, sensu Memmott et al. [27]; species are removed based on

abundance with the least abundant species going extinct first) and

can be calculated separately for both groups of mutualists. An R

value of 1 indicates a very robust system, while a value of 0

indicates a fragile one [27,40].

Results

We censused N = 322 myrmecophytic plants in forest fragments

and N = 653 in continuous forest; for a detailed description of

these results see [31]. Summaries of the number of individual ant-

plant interactions observed in continuous forest and forest

fragments are in Tables 2 and 3, respectively; data on the

frequency of interactions in individual plots are in [41].

We found that networks in continuous forest had significantly

more plant species than networks in forest fragments (N = 7.25 vs.

N = 4.25, respectively, P = 0.015, Figure 1, Table 1), and there was

a trend towards more ant species in continuous forests than forest

fragments (N = 10 vs. N = 7, respectively, P = 0.092). However,

none of the other eight metrics we calculated differed for networks

in forest fragments and continuous forest (Table 1, Table S1). On

average species were linked to approximately one other species,

though there was a trend towards lower connectance in

continuous forests than forest fragments (0.27960.04 vs.

0.49660.09, respectively, p = 0.351). Nestedness was, on average,

43.3263.4 in forest fragments and 25.8568.5 in continuous forest.

Summary networks (Figure 2) had values for all metrics that were

similar to the averages for plots in that habitat class (Table 1).

Discussion

Tropical forest fragments undergo myriad biotic and abiotic

changes following their isolation, among the most notable of which

are the local extinctions of plant and animal species [17,42,43].

Because most plant and animal species are involved in mutualisms,

it has been suggested that the extinctions of individual taxa could

result in a ‘‘cascade of extinctions’’ reverberating throughout

communities of interacting taxa [44]. We found that the networks

of ant-plant mutualists in twenty-five year old fragments are

similar to those in continuous forest, suggesting these interactions

are surprisingly resistant to the detrimental changes associated

with habitat fragmentation. These results echo those of Kaartinen

and Roslin’s [45] comprehensive study of food webs associated

with oak trees in Finland, in which landscape context had no

detectable effect on interaction evenness, linkage density, con-

nectance, or network vulnerability. However, generalities regard-

ing the effect of habitat fragmentation on mutualistic networks

clearly require additional studies, including those explicitly

evaluating how network structure changes in fragments of different

sizes and with a broader diversity of mutualistic interactions

[9,46].

It is also important to emphasize that ant-plant mutualistic

networks have several unique properties that may promote their

persistence in fragmented landscapes. Nested mutualistic networks

are expected to be resilient to species losses if extinctions involve

specialists that are involved in fewer interactions within the

network [27,40]. Synergisms between species rarity and habitat

specialization were found to lead to extinction in beetle species in

fragmented habitats [26]. This is probably why ant-plant networks

in fragments and continuous forest were similar in structure

despite species losses – the species lost in fragments tended to be

those with only one connection. For instance, the ants Myrcidris

epicharis, Camponotus balzani, and Pheidole minutula – each of which

was linked to only one plant species in continuous forest – were all

absent in fragments. Similarly, five plant species missing in

fragments (i.e., Tachigali venusta, Porouma spp., Myrcia madida,

Cecropia purpurascens, Maieta guianensis) were associated with only

Table 1. Metrics used to compare the structure of ant-plant mutualist networks in Continuous Forest (CF) and Forest Fragments
(FF) and results of statistical analyses.

Metric H0 Calculation Pooled results Fragment-level statistical comparisons

CF FF MeanCF±SEM MeanFF±SEM Pr.F

Number of
ant species

1 ant species 10 7 6.560.87 4.560.5 0.092

Number of
plant species

1 plant species 11 7 7.2560.75 4.2560.48 0.015

Links per
species

2 links/species 1 1.21 0.960.04 1.0260.09 0.295

Connectance 2 links/species 0.19 0.35 0.27960.04 0.49660.09 0.074

Linkage
Density1

2
LDq ~

1

2

Xs

k~1

bk

b
nP,k z

Xs

k~1

bk

b
nN,k

 !
1.8 1.8 1.73260.05 1.64860.07 0.351

Nestedness2 3 With BINMATNEST in Bipartite (51) 35.98 33.26 43.3263.4 25.8568.5 0.105

Weighted
Nestedness3

3 WINE (53) 0.06 0.13 0.18860.07 0.10360.07 0.421

Robustness
(ants)

4 (33) 0.56 0.56 0.48360.05 0.39360.05 0.253

Robustness
(plants)

4 (33) 0.54 0.57 0.46460.03 0.53360.08 0.440

1See (10) for a complete description. s = number of species in the web and bNk and bkN represent column sum and row sums, respectively, of the plant/ant matrix, i.e., the
total number of individuals associated with taxon k.
2Nestedness ranges from 0 to 100, with 0 being most nested and 100 indicating complete randomness.
3Weighted nestedness ranges from 0 to 1, where 1 is the most nested.
doi:10.1371/journal.pone.0040803.t001

Habitat Fragmentation and Network Structure

PLoS ONE | www.plosone.org 3 August 2012 | Volume 7 | Issue 8 | e40803



Table 2. Matrix of the frequency of each obligate ant-myrmechophyte interaction observed in continuous forest (all plots
combined).

Continuous Forest

Ants1 1 2 3 4 5 6 7 8 9 10 U2

Ad Ao As Az Cab Cl Me Pc Pn Pm

Plants3

1 Cp 1 6

2 Cn 1 39 96

3 Ds 2 5 1 2

4 Hm 8 220 81 62

5 Hp 23 10 3 2

6 Mg 1 1

7 Mm 10 1

8 Pr 1

9 Tm 5 26 11 9

10 Tp

11 Tv 10

12 Tb 9 3 4

Numbers in bold are the same as those used to identify species in Figures 1 and 2. Note that unoccupied plants (U) of all species were primarily seedlings [31].
1Ant species: 1 Allomerus decemarticulatus (Ad), 2 Allomerus octoarticulatus (Ao), 3 Allomerus septemarticulatus (As), 4 Azteca spp. (Az), 5 Camponotus balzani (Cab), 6
Crematogaster laevis (Cl), 7 Myrcidris epicharis (Me), 8 Pseudomyrmex concolor (Pc), 9 Pseudomyrmex nigrescens (Pn), 10 Pheidole minutula (Pm).
2Unoccupied plants (U).
3Plant species: 1 Cecropia purpurascens (Cp), 2 Cordia nodosa (Cn), 3 Duroia saccifera (Ds), 4 Hirtella myrmecophila (Hm), 5 Hirtella physophora (Hp), 6 Maieta guianensis
(Mg), 7 Myrcia madida (Mm), 8 Porouma spp. (Pr), 9 Tachigali myrmecophila (Tm), 10 Tachigali pumblea (Tp), 11 Tachigali venusta (Tv), 12 Tococa bullifera (Tb).
doi:10.1371/journal.pone.0040803.t002

Table 3. Matrix of the frequency of each obligate ant-myrmechophyte interaction observed in forest fragments (all plots
combined).

Forest Fragments

Ants1 1 2 3 4 5 6 7 8 9 10 U2

Ad Ao As Az Cab Cl Me Pc Pn Pm

Plants3

1 Cp 2

2 Cn 39 14

3 Ds 2 1

4 Hm 1 164 22 9 10

5 Hp 1 23 6 6 1

6 Mg 1

7 Mm

8 Pr 4

9 Tm 1 1 2 3

10 Tp 1

11 Tv 2

12 Tb 3 1 2

Numbers in bold are the same as those used to identify species in Figures 1 and 2. Note that unoccupied plants of all species were primarily seedlings [31].
1Ant species: 1 Allomerus decemarticulatus (Ad), 2 Allomerus octoarticulatus (Ao), 3 Allomerus septemarticulatus (As), 4 Azteca spp. (Az), 5 Camponotus balzani (Cab), 6
Crematogaster laevis (Cl), 7 Myrcidris epicharis (Me), 8 Pseudomyrmex concolor (Pc), 9 Pseudomyrmex nigrescens (Pn), 10 Pheidole minutula (Pm).
2Unoccupied plants (U).
3Plant species: 1 Cecropia purpurascens (Cp), 2 Cordia nodosa (Cn), 3 Duroia saccifera (Ds), 4 Hirtella myrmecophila (Hm), 5 Hirtella physophora (Hp), 6 Maieta guianensis
(Mg), 7 Myrcia madida (Mm), 8 Porouma spp. (Pr), 9 Tachigali myrmecophila (Tm), 10 Tachigali pumblea (Tp), 11 Tachigali venusta (Tv), 12 Tococa bullifera (Tb).
doi:10.1371/journal.pone.0040803.t003
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one ant species in continuous forest sites. Such associations formed

isolated subwebs, which are common in symbiotic interaction

networks [30,47], that were completely absent in the pooled

fragment networks (although 3 of 4 of the individual plot networks

in forest fragments also had subwebs, see Figure 2). The loss of

specialists from a nested network is expected to have little effect on

the overall structure of the network [27,40]; in this case the nested

structure may have reduced the transmission of disturbance

through the rest of the community [4,48].

In general, it appears that the resilience of mutualistic networks

is enhanced by higher species richness, network connectivity, and

through strong, symmetric interaction within highly nested

networks [49,50]. Our results provide additional evidence in

support of one additional mechanism promoting the persistence of

mutualist networks following disturbance - symbiosis. Mutualisms

that are symbiotic, such as those between ants and myrmecophytic

plants [47], appear more resilient to disturbances than networks of

non-symbiotic mutualistic interactions (e.g., seed dispersal, polli-

nation). Because symbiotic networks tend to have lower species

richness and more isolated subwebs compared to non-symbiotic

networks, the loss of a single partner species rarely reverberates

throughout the community [47]. In light of the challenges in

conducting manipulations of biodiversity in a field setting, tests of

this hypothesis would benefit from the rigorous integration of

models and empirical studies advocated by Morris [8].

Although our study was not designed to compare within-habitat

variation in the structure of networks, it appears that replicates

within a single habitat class were often quite variable. Within

habitat heterogeneity is hypothesized to have a major influence on

network topology [11,51] via sampling effects [35] and because

interaction probabilities will depend on the distribution of

individuals across the landscape [11]. Unfortunately, most studies

of mutualistic networks have been conducted in a single location

[52], so addressing this important issue remains a challenge. In our

sites, common species were consistently present but links with less

common species were unpredictable. Given that the effects of

fragment size, fragment isolation, and species loss can be

confounded, mesocosm studies [9] could provide a useful

complementary tool for identifying the causal factors by which

landscape structure influences network structure.

Three important caveats to our results bear consideration. First,

the taxonomies of the ant genus Azteca remains challenging and

has yet to be fully resolved for our study sites [30,53].

Consequently, we have under-estimated the number of species

involved in the ant-plant network by pooling multiple Azteca

species in a single taxon for our analyses. Our ongoing molecular

analyses are attempting to determine the number of Azteca species

colonizing myrmecophytes, and including multiple Azteca species

species will clearly alter the structure of networks. However, the

overall conclusion that networks are similar in forest fragments

and continuous forests will likely remain unchanged – with the

exception of Cordia nodosa, plant species colonized by Azteca are

relatively rare [30] and have similar abundances in both fragments

and continuous forest [31]. Second, our experimental fragments

are relatively young compared with those in other locations, such

as the Atlantic Forests of Brazil’s northeast [54]. Because many of

the plant species in our network are long-lived [55], it may yet be

decades until changes in their abundance result in altered network

structure. Finally, our results may be conservative because the

BDFFP fragments are protected from fire, the incursion of cattle,

and other forms of anthropogenic disturbance. In addition, there

are large expanses of nearby primary and regenerating forest from

which propagules of some ant and plant species could disperse into

fragments, and the matrix in which our fragments are embedded

may be much more permeable to dispersing species than other

matrix types (e.g., active cattle pastures, sugarcane fields). On the

other hand, these 1-ha fragments are extremely small and even

their interiors are subjected to the most severe of abiotic edge

effects [56]. Furthermore, recent work suggests the distance

between fragments and nearby continuous forest may be sufficient

Figure 1. Networks for Continuous Forest (left) and Forest Fragment (right) based on data pooled across all sites. For each network
vertical bars on the left represent plant abundance and bars on the right represent ant abundance; the width of the grey lines connecting them
represents the frequency of that interaction. Ant species: 1 Allomerus decemarticulatus, 2 Allomerus octoarticulatus, 3 Allomerus septemarticulatus, 4
Azteca spp., 5 Camponotus balzani, 6 Crematogaster laevis, 7 Myrcidris epicharis, 8 Pseudomyrmex concolor, 9 Pseudomyrmex nigrescens, 10 Pheidole
minutula. Plant species: 1 Cecropia purpurascens, 2 Cordia nodosa, 3 Duroia saccifera, 4 Hirtella myrmecophila, 5 Hirtella physophora, 6 Maieta
guianensis, 7 Myrcia madida, 8 Porouma spp., 9 Tachigali myrmecophila, 10 Tachigali pumblea, 11 Tachigali venusta, 12 Tococa bullifera.
doi:10.1371/journal.pone.0040803.g001
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to prevent the colonization of several common partner ant species

[53], which may be why the density of the most common ant-

plants in our study fragments is lower than in nearby continuous

forest [31]. Finally, conducting our study in the BDFFP’s

experimental landscape allowed for us to minimize the effects of

inter-fragment variability that often plague studies conducted in

‘naturally’ fragmented landscapes. However, it also meant our

surveys were limited to the number of fragments available at the

BDFFP. Though the environmental changes in our study

fragments are often severe [53] and our results are remarkably

consistent across different metrics of network structure, it is

possible that small but significant differences would be detected

with the power resulting from increasing the number of fragments

sampled. A robust test of our conclusion that ant-plant networks

are resistant to the effects of fragmentation will clearly require

additional studies with larger sample sizes, across a range of

fragment sizes and ages [13], and in landscapes where fragments

are afforded different levels of protection from anthropogenic

impacts.

We conclude that the redundancy built into mutualistic

networks and the limited number of 1:1 interactions in tropical

ant-plant systems makes these networks inherently resistant to the

effects of fragmentation, at least in the short term [45]. However,

ongoing deforestation and climate change continue to influence

species distributions worldwide, and may thus influence the

structure of networks in unexpected ways [57,58,59]. By

proactively identifying key species in webs (e.g., the well-connected

Allomerus octoarticulatus and Hirtella myrmecophila in our network), it

may be possible to focus conservation efforts on those species in

addition to the more commonly targeted rare or endemic ones as a

means of ensuring the integrity of network structure and ecosystem

services these networks provide [8,9,15].

Supporting Information

Table S1 Tables for one-way ANOVAs of nine network metrics.

The metric with a significant p-value (alpha level = 0.05) is in bold.

(DOC)
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