20 research outputs found
Effect of Storage Temperature on Key Functions of Cultured Retinal Pigment Epithelial Cells
Purpose. Replacement of the diseased retinal pigment epithelium (RPE) with cells capable of performing the specialized functions of the RPE is the aim of cell replacement therapy for treatment of macular degenerative diseases. A storage method for RPE is likely to become a prerequisite for the establishment of such treatment. Herein, we analyze the effect of storage temperature on key functions of cultured RPE cells. Methods. Cultured ARPE-19 cells were stored in Minimum Essential Medium at 4°C, 16°C, and 37°C for seven days. Total RNA was isolated and the gene expression profile was determined using DNA microarrays. Comparison of the microarray expression values with qRT-PCR analysis of selected genes validated the results. Results. Expression levels of several key genes involved in phagocytosis, pigment synthesis, the visual cycle, adherens, and tight junctions, and glucose and ion transport were maintained close to control levels in cultures stored at 4°C and 16°C. Cultures stored at 37°C displayed regulational changes in a larger subset of genes related to phagocytosis, adherens, and tight junctions. Conclusion. RPE cultures stored at 4°C and 16°C for one week are capable of maintaining the expression levels of genes important for key RPE functions close to control levels
Recommended from our members
Optimization of Storage Temperature for Cultured ARPE-19 Cells
Purpose. The establishment of future retinal pigment epithelium (RPE) replacement therapy is partly dependent on the availability of tissue-engineered RPE cells, which may be enhanced by the development of suitable storage methods for RPE. This study investigates the effect of different storage temperatures on the viability, morphology, and phenotype of cultured RPE. Methods. ARPE-19 cells were cultured under standard conditions and stored in HEPES-buffered MEM at nine temperatures (4°C, 8°C, 12°C, 16°C, 20°C, 24°C, 28°C, 32°C, and 37°C) for seven days. Viability and phenotype were assessed by a microplate fluorometer and epifluorescence microscopy, while morphology was analyzed by scanning electron microscopy. Results. The percentage of viable cells preserved after storage was highest in the 16°C group (48.7%±9.8%; P<0.01 compared to 4°C, 8°C, and 24°C–37°C; P<0.05 compared to 12°C). Ultrastructure was best preserved at 12°C, 16°C, and 20°C. Expression of actin, ZO-1, PCNA, caspase-3, and RPE65 was maintained after storage at 16°C compared to control cells that were not stored. Conclusion. Out of nine temperatures tested between 4°C and 37°C, storage at 12°C, 16°C, and 20°C was optimal for maintenance of RPE cell viability, morphology, and phenotype. The preservation of RPE cells is critically dependent on storage temperature
Feasibilty Study of Automatic Tracing of Human Jin-Luo Line : Basic Experiments
Storage of human retinal pigment epithelium (hRPE) can contribute to the advancement of cell-based RPE replacement therapies. The present study aimed to improve the quality of stored hRPE cultures by identifying storage medium additives that, alone or in combination, contribute to enhancing cell viability while preserving morphology and phenotype. hRPE cells were cultured in the presence of the silk protein sericin until pigmentation. Cells were then stored for 10 days in storage medium plus sericin and either one of 46 diferent additives. Individual efects of each additive on cell viability were assessed using epifuorescence microscopy. Factorial design identifed promising additive combinations by extrapolating their individual efects. Supplementing the storage medium with sericin combined with adenosine, L-ascorbic acid and allopurinol resulted in the highest cell viability (98.6 ± 0.5%) after storage for three days, as measured by epifuorescence microscopy. Flow cytometry validated the fndings. Proteomics identifed 61 upregulated and 65 downregulated proteins in this storage group compared to the unstored control. Transmission electron microscopy demonstrated the presence of melanosomes after storage in the optimized medium. We conclude that the combination of adenosine, L-ascorbic acid, allopurinol and sericin in minimal essential medium preserves RPE pigmentation while maintaining cell viability during storage
Transcriptome Analysis of Cultured Limbal Epithelial Cells on an Intact Amniotic Membrane following Hypothermic Storage in Optisol-GS
The aim of the present study was to investigate the molecular mechanisms underlying activation of cell death pathways using genome-wide transcriptional analysis in human limbal epithelial cell (HLEC) cultures following conventional hypothermic storage in Optisol-GS. Three-week HLEC cultures were stored in Optisol-GS for 2, 4, and 7 days at 4 °C. Partek Genomics Suite software v.6.15.0422, (Partec Inc., St. Louis, MO, USA) was used to identify genes that showed significantly different (P < 0.05) levels of expression following hypothermic storage compared to non-stored cell sheets. There were few changes in gene expression after 2 days of storage, but several genes were differently regulated following 4 and 7 days of storage. The histone-coding genes HIST1H3A and HIST4H4 were among the most upregulated genes following 4 and 7 days of hypothermic storage. Bioinformatic analysis suggested that these two genes are involved in a functional network highly associated with cell death, necrosis, and transcription of RNA. HDAC1, encoding histone deacetylase 1, was the most downregulated gene after 7 days of storage. Together with other downregulated genes, it is suggested that HDAC1 is involved in a regulating network significantly associated with cellular function and maintenance, differentiation of cells, and DNA repair. Our data suggest that the upregulated expression of histone-coding genes together with downregulated genes affecting cell differentiation and DNA repair may be responsible for increased cell death following hypothermic storage of cultured HLEC. In summary, our results demonstrated that a higher number of genes changed with increasing storage time. Moreover, in general, larger differences in absolute gene expression values were observed with increasing storage time. Further understanding of these molecular mechanisms is important for optimization of storage technology for limbal epithelial sheet
Effects of explant size on epithelial outgrowth, thickness, stratification, ultrastructure and phenotype of cultured limbal epithelial cells
Purpose Transplantation of limbal stem cells is a promising therapy for limbal stem cell deficiency. Limbal cells can be harvested from either a healthy part of the patient’s eye or the eye of a donor. Small explants are less likely to inflict injury to the donor site. We investigated the effects of limbal explant size on multiple characteristics known to be important for transplant function. Methods Human limbal epithelial cells were expanded from large versus small explants (3 versus 1 mm of the corneal circumference) for 3 weeks and characterized by light microscopy, immunohistochemistry, and transmission electron microscopy. Epithelial thickness, stratification, outgrowth, ultrastructure and phenotype were assessed. Results Epithelial thickness and stratification were similar between the groups. Outgrowth size correlated positively with explant size (r = 0.37; P = 0.01), whereas fold growth correlated negatively with explant size (r = –0.55; P < 0.0001). Percentage of cells expressing the limbal epithelial cell marker K19 was higher in cells derived from large explants (99.1±1.2%) compared to cells derived from small explants (93.2±13.6%, P = 0.024). The percentage of cells expressing ABCG2, integrin β1, p63, and p63α that are markers suggestive of an immature phenotype; Keratin 3, Connexin 43, and E-Cadherin that are markers of differentiation; and Ki67 and PCNA that indicate cell proliferation were equal in both groups. Desmosome and hemidesmosome densities were equal between the groups. Conclusion For donor- and culture conditions used in the present study, large explants are preferable to small in terms of outgrowth area. As regards limbal epithelial cell thickness, stratification, mechanical strength, and the attainment of a predominantly immature phenotype, both large and small explants are sufficient
Storage Temperature Alters the Expression of Differentiation-Related Genes in Cultured Oral Keratinocytes
Purpose Storage of cultured human oral keratinocytes (HOK) allows for transportation of cultured transplants to eye clinics worldwide. In a previous study, one-week storage of cultured HOK was found to be superior with regard to viability and morphology at 12°C compared to 4°C and 37°C. To understand more of how storage temperature affects cell phenotype, gene expression of HOK before and after storage at 4°C, 12°C, and 37°C was assessed. Materials and Methods Cultured HOK were stored in HEPES- and sodium bicarbonate-buffered Minimum Essential Medium at 4°C, 12°C, and 37°C for one week. Total RNA was isolated and the gene expression profile was determined using DNA microarrays and analyzed with Partek Genomics Suite software and Ingenuity Pathway Analysis. Differentially expressed genes (fold change > 1.5 and P < 0.05) were identified by one-way ANOVA. Key genes were validated using qPCR. Results: Gene expression of cultures stored at 4°C and 12°C clustered close to the unstored control cultures. Cultures stored at 37°C displayed substantial change in gene expression compared to the other groups. In comparison with 12°C, 2,981 genes were differentially expressed at 37°C. In contrast, only 67 genes were differentially expressed between the unstored control and the cells stored at 12°C. The 12°C and 37°C culture groups differed most significantly with regard to the expression of differentiation markers. The Hedgehog signaling pathway was significantly downregulated at 37°C compared to 12°C. Conclusion: HOK cultures stored at 37°C showed considerably larger changes in gene expression compared to unstored cells than cultured HOK stored at 4°C and 12°C. The changes observed at 37°C consisted of differentiation of the cells towards a squamous epithelium-specific phenotype. Storing cultured ocular surface transplants at 37°C is therefore not recommended. This is particularly interesting as 37°C is the standard incubation temperature used for cell culture
Effects of explant size on epithelial outgrowth, thickness, stratification, ultrastructure and phenotype of cultured limbal epithelial cells
Purpose Transplantation of limbal stem cells is a promising therapy for limbal stem cell deficiency. Limbal cells can be harvested from either a healthy part of the patient’s eye or the eye of a donor. Small explants are less likely to inflict injury to the donor site. We investigated the effects of limbal explant size on multiple characteristics known to be important for transplant function. Methods Human limbal epithelial cells were expanded from large versus small explants (3 versus 1 mm of the corneal circumference) for 3 weeks and characterized by light microscopy, immunohistochemistry, and transmission electron microscopy. Epithelial thickness, stratification, outgrowth, ultrastructure and phenotype were assessed. Results Epithelial thickness and stratification were similar between the groups. Outgrowth size correlated positively with explant size (r = 0.37; P = 0.01), whereas fold growth correlated negatively with explant size (r = –0.55; P < 0.0001). Percentage of cells expressing the limbal epithelial cell marker K19 was higher in cells derived from large explants (99.1±1.2%) compared to cells derived from small explants (93.2±13.6%, P = 0.024). The percentage of cells expressing ABCG2, integrin β1, p63, and p63α that are markers suggestive of an immature phenotype; Keratin 3, Connexin 43, and E-Cadherin that are markers of differentiation; and Ki67 and PCNA that indicate cell proliferation were equal in both groups. Desmosome and hemidesmosome densities were equal between the groups. Conclusion For donor- and culture conditions used in the present study, large explants are preferable to small in terms of outgrowth area. As regards limbal epithelial cell thickness, stratification, mechanical strength, and the attainment of a predominantly immature phenotype, both large and small explants are sufficient
Principal component analyses demonstrated clustering of the gene expression of unstored cultures (violet) and cultures stored for one week at 4°C (red) and 12°C (blue).
<p>In contrast, gene expression of cultures stored at 37°C (green) showed a distant clustering compared to the other experimental groups.</p