25 research outputs found

    Heart regeneration after miocardial infarction using synthetic biomaterials

    Get PDF
    Myocardial infarction causes almost 7.3 million deaths each year worldwide. However, current treatments are more palliative than curative. Presently, cell and protein therapies are considered the most promising alternative treatments. Clinical trials performed until now have demonstrated that these therapies are limited by protein short half‐life and by low transplanted cell survival rate, prompting the development of novel cell and protein delivery systems able to overcome such limitations. In this review we discuss the advances made in the last 10 years in the emerging field of cardiac repair using biomaterial‐based delivery systems with focus on the progress made on preclinical in vivo studies. Then, we focus in cardiac tissue engineering approaches, and how the incorporation of both cells and proteins together into biomaterials has opened new horizons in the myocardial infarction treatment. Finally, the ongoing challenges and the perspectives for future work in cardiac tissue engineering will also be discussed

    The nature of the Cygnus extreme B supergiant 2MASS J20395358+4222505

    Get PDF
    2MASS J20395358+4222505 is an obscured early B supergiant near the massive OB star association Cygnus OB2. Despite its bright infrared magnitude (Ks = 5.82) it has remained largely ignored because of its dim optical magnitude (B = 16.63, V = 13.68). In a previous paper, we classified it as a highly reddened, potentially extremely luminous, early B-type supergiant. We obtained its spectrum in the U, B and R spectral bands during commissioning observations with the instrument MEGARA at the Gran Telescopio CANARIAS. It displays a particularly strong Hα emission for its spectral type, B1 Ia. The star seems to be in an intermediate phase between supergiant and hypergiant, a group that it will probably join in the near (astronomical) future. We observe a radial velocity difference between individual observations and determine the stellar parameters, obtaining Teff = 24 000 K and log gc = 2.88 ± 0.15. The rotational velocity found is large for a B supergiant, v sin i = 110 ± 25 kms−1⁠. The abundance pattern is consistent with solar, with a mild C underabundance (based on a single line). Assuming that J20395358+4222505 is at the distance of Cyg OB2, we derive the radius from infrared photometry, finding R = 41.2 ± 4.0 R⊙, log(L/L⊙) = 5.71 ± 0.04 and a spectroscopic mass of 46.5 ± 15.0 M⊙. The clumped mass-loss rate (clumping factor 10) is very high for the spectral type, M˙ = 2.4 × 10−6 M⊙ a−1. The high rotational velocity and mass-loss rate place the star at the hot side of the bi-stability jump. Together with the nearly solar CNO abundance pattern, they may also point to evolution in a binary system, J20395358+4222505 being the initial secondary.SS-D and AH acknowledge support from the Spanish Government Ministerio de Ciencia e InnovaciĂłn through grants PGC-2018-091 3741-B-C22 and CEX2019-000920-S and from the Canarian Agency for Research, Innovation and Information Society (ACIISI), of the Canary Islands Government, and the European Regional Development Fund (ERDF), under grant with reference ProID2020010016. MG and FN acknowledge financial support through Spanish grant PID2019-105552RB-C41 (MINECO/MCIU/AEI/FEDER) and from the Spanish State Research Agency (AEI) through the Unidad de Excelencia ‘MarĂ­a de Maeztu’-Centro de AstrobiologĂ­a (CSIC-INTA) project No. MDM-2017-0737. SRB acknowledges support by the Spanish Government under grants AYA2015-68012-C2-2-P and PGC2018-093741-B-C21/C22 (MICIU/AEI/FEDER, UE). SRA acknowledges funding support from the FONDECYT IniciaciĂłn project 11171025 and the FONDECYT Regular project 1201490. JIP acknowledges finantial support from projects Estallidos6 AYA2016-79724-C4 (Spanish Ministerio de Economia y Competitividad), Estallidos7 PID2019-107408GB-C44 (Spanish Ministerio de Ciencia e Innovacion), grant P18-FR-2664 (Junta de AndalucĂ­a), and grant SEV-2017-0709 ‘Centro de Excelencia Severo Ochoa Program’ (Spanish Science Ministry). AGP, SP, AG-M, JG and NC acknowledge support from the Spanish MCI through project RTI2018-096188-B-I00

    The nature of the Cygnus extreme B supergiant 2MASS J20395358+4222505

    Get PDF
    2MASS J20395358+4222505 is an obscured early B supergiant near the massive OB star association Cygnus OB2. Despite its bright infrared magnitude (K-s = 5.82) it has remained largely ignored because of its dim optical magnitude (B = 16.63, V = 13.68). In a previous paper, we classified it as a highly reddened, potentially extremely luminous, early B-type supergiant. We obtained its spectrum in the U, B and R spectral bands during commissioning observations with the instrument MEGARA at the Gran Telescopio CANARIAS. It displays a particularly strong H-alpha emission for its spectral type, B1 Ia. The star seems to be in an intermediate phase between supergiant and hypergiant, a group that it will probably join in the near (astronomical) future. We observe a radial velocity difference between individual observations and determine the stellar parameters, obtaining T-eff = 24 000 K and log g(c) = 2.88 +/- 0.15. The rotational velocity found is large for a B supergiant, v sin i = 110 +/- 25 km s(-1). The abundance pattern is consistent with solar, with a mild C underabundance (based on a single line). Assuming that J20395358+4222505 is at the distance of Cyg OB2, we derive the radius from infrared photometry, finding R = 41.2 +/- 4.0 R-circle dot, log(L/L-circle dot) = 5.71 +/- 0.04 and a spectroscopic mass of 46.5 +/- 15.0 M-circle dot. The clumped mass-loss rate (clumping factor 10) is very high for the spectral type, (M) over dot = 2.4 x10(-6) M-circle dot a(-1). The high rotational velocity and mass-loss rate place the star at the hot side of the bi-stability jump. Together with the nearly solar CNO abundance pattern, they may also point to evolution in a binary system, J20395358+4222505 being the initial secondary

    Associations between eating speed, diet quality, adiposity, and cardiometabolic risk factors

    Get PDF
    Objective: To assess the associations between eating speed, adiposity, cardiometabolic risk factors, and diet quality in a cohort of Spanish preschool-children. Study design: A cross-sectional study in 1371 preschool age children (49% girls; mean age, 4.8 ± 1.0 years) from the Childhood Obesity Risk Assessment Longitudinal Study (CORALS) cohort was conducted. After exclusions, 956 participants were included in the analyses. The eating speed was estimated by summing the total minutes used in each of the 3 main meals and then categorized into slow, moderate, or fast. Multiple linear and logistic regression models were fitted to assess the ÎČ-coefficient, or OR and 95% CI, between eating speed and body mass index, waist circumference, fat mass index (FMI), blood pressure, fasting plasma glucose, and lipid profile. Results: Compared with participants in the slow-eating category, those in the fast-eating category had a higher prevalence risk of overweight/obesity (OR, 2.9; 95% CI, 1.8-4.4; P < .01); larger waist circumference (ÎČ, 2.6 cm; 95% CI, 1.5-3.8 cm); and greater FMI (ÎČ, 0.3 kg/m2; 95% CI, 0.1-0.5 kg/m2), systolic blood pressure (ÎČ, 2.8 mmHg; 95% CI, 0.6-4.9 mmHg), and fasting plasma glucose levels (ÎČ, 2.7 mg/dL, 95% CI, 1.2-4.2 mg/dL) but lower adherence to the Mediterranean diet (ÎČ, −0.5 points; 95% CI, −0.9 to −0.1 points). Conclusions: Eating fast is associated with higher adiposity, certain cardiometabolic risk factors, and lower adherence to a Mediterranean diet. Further long-term and interventional studies are warranted to confirm these associations

    MEGARA, the new intermediate-resolution optical IFU and MOS for GTC: getting ready for the telescope

    Get PDF
    MEGARA (Multi-EspectrĂłgrafo en GTC de Alta ResoluciĂłn para AstronomĂ­a) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4m telescope in La Palma that is being built by a Consortium led by UCM (Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain), and UPM (Spain). The instrument is currently finishing AIV and will be sent to GTC on November 2016 for its on-sky commissioning on April 2017. The MEGARA IFU fiber bundle (LCB) covers 12.5x11.3 arcsec2 with a spaxel size of 0.62 arcsec while the MEGARA MOS mode allows observing up to 92 objects in a region of 3.5x3.5 arcmin2 around the IFU. The IFU and MOS modes of MEGARA will provide identical intermediate-to-high spectral resolutions (RFWHM~6,000, 12,000 and 18,700, respectively for the low-, mid- and high-resolution Volume Phase Holographic gratings) in the range 3700-9800ÅÅ. An x-y mechanism placed at the pseudo-slit position allows (1) exchanging between the two observing modes and (2) focusing the spectrograph for each VPH setup. The spectrograph is a collimator-camera system that has a total of 11 VPHs simultaneously available (out of the 18 VPHs designed and being built) that are placed in the pupil by means of a wheel and an insertion mechanism. The custom-made cryostat hosts a 4kx4k 15-ÎŒm CCD. The unique characteristics of MEGARA in terms of throughput and versatility and the unsurpassed collecting are of GTC make of this instrument the most efficient tool to date to analyze astrophysical objects at intermediate spectral resolutions. In these proceedings we present a summary of the instrument characteristics and the results from the AIV phase. All subsystems have been successfully integrated and the system-level AIV phase is progressing as expected

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Nuevas estrategias para la reparación cardiaca basadas en sistemas de liberación poliméricos y factores de crecimiento

    No full text
    Myocardial infarction (MI) is the main cardiovascular disease, causing more than 7 million deaths per year 1. In spite of its clinical relevance 2,3, this pathology is from been controlled and risk factors associated to it are considerably augmenting in modern society, as pointed out by the World Health Organization, which has estimated that the number of MI events will dramatically increase by 2030 1. MI is usually started by the occlusion of a coronary artery, that causes an ischemic condition in the cardiac tissue. This lack of oxygen supply induces a massive cell death of cardiac cells and a negative tissue remodeling takes place. Consequently, functional limitations and eventually death may occur

    Nuevas estrategias para la reparación cardiaca basadas en sistemas de liberación poliméricos y factores de crecimiento

    No full text
    Myocardial infarction (MI) is the main cardiovascular disease, causing more than 7 million deaths per year 1. In spite of its clinical relevance 2,3, this pathology is from been controlled and risk factors associated to it are considerably augmenting in modern society, as pointed out by the World Health Organization, which has estimated that the number of MI events will dramatically increase by 2030 1. MI is usually started by the occlusion of a coronary artery, that causes an ischemic condition in the cardiac tissue. This lack of oxygen supply induces a massive cell death of cardiac cells and a negative tissue remodeling takes place. Consequently, functional limitations and eventually death may occur
    corecore