27 research outputs found

    Ask yeast how to burn your fats: lessons learned from the metabolic adaptation to salt stress

    Full text link
    [EN] Here, we review and update the recent advances in the metabolic control during the adaptive response of budding yeast to hyperosmotic and salt stress, which is one of the best understood signaling events at the molecular level. This environmental stress can be easily applied and hence has been exploited in the past to generate an impressively detailed and comprehensive model of cellular adaptation. It is clear now that this stress modulates a great number of different physiological functions of the cell, which altogether contribute to cellular survival and adaptation. Primary defense mechanisms are the massive induction of stress tolerance genes in the nucleus, the activation of cation transport at the plasma membrane, or the production and intracellular accumulation of osmolytes. At the same time and in a coordinated manner, the cell shuts down the expression of housekeeping genes, delays the progression of the cell cycle, inhibits genomic replication, and modulates translation efficiency to optimize the response and to avoid cellular damage. To this fascinating interplay of cellular functions directly regulated by the stress, we have to add yet another layer of control, which is physiologically relevant for stress tolerance. Salt stress induces an immediate metabolic readjustment, which includes the up-regulation of peroxisomal biomass and activity in a coordinated manner with the reinforcement of mitochondrial respiratory metabolism. Our recent findings are consistent with a model, where salt stress triggers a metabolic shift from fermentation to respiration fueled by the enhanced peroxisomal oxidation of fatty acids. We discuss here the regulatory details of this stress-induced metabolic shift and its possible roles in the context of the previously known adaptive functions.The work of the authors was supported by grants from Ministerio de Economía y Competitividad (BFU2011- 23326 and BFU2016-75792-R).Pascual-Ahuir Giner, MD.; Manzanares-Estreder, S.; Timón Gómez, A.; Proft ., MH. (2017). Ask yeast how to burn your fats: lessons learned from the metabolic adaptation to salt stress. Current Genetics. 64(1):63-69. https://doi.org/10.1007/s00294-017-0724-5S6369641Aguilera J, Prieto JA (2001) The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions. Curr Genet 39:273–283Albertyn J, Hohmann S, Thevelein JM, Prior BA (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14:4135–4144Alepuz PM, Jovanovic A, Reiser V, Ammerer G (2001) Stress-induced map kinase Hog1 is part of transcription activation complexes. Mol Cell 7:767–777Alepuz PM, de Nadal E, Zapater M, Ammerer G, Posas F (2003) Osmostress-induced transcription by Hot1 depends on a Hog1-mediated recruitment of the RNA Pol II. EMBO J 22:2433–2442Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L (1997) The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 16:2179–2187Babazadeh R, Lahtvee PJ, Adiels CB, Goksor M, Nielsen JB, Hohmann S (2017) The yeast osmostress response is carbon source dependent. Sci Rep 7:990Bender T, Pena G, Martinou JC (2015) Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes. EMBO J 34:911–924Berry DB, Gasch AP (2008) Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell 19:4580–4587Bilsland-Marchesan E, Arino J, Saito H, Sunnerhagen P, Posas F (2000) Rck2 kinase is a substrate for the osmotic stress-activated mitogen-activated protein kinase Hog1. Mol Cell Biol 20:3887–3895Brewster JL, Gustin MC (2014) Hog 1: 20 years of discovery and impact. Sci Signal 7:re7Clotet J, Posas F (2007) Control of cell cycle in response to osmostress: lessons from yeast. Methods Enzymol 428:63–76Clotet J, Escote X, Adrover MA, Yaakov G, Gari E, Aldea M, de Nadal E, Posas F (2006) Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity. EMBO J 25:2338–2346Cook KE, O’Shea EK (2012) Hog1 controls global reallocation of RNA Pol II upon osmotic shock in Saccharomyces cerevisiae. Genes Genomes Genetics 2:1129–1136de Nadal E, Posas F (2015) Osmostress-induced gene expression—a model to understand how stress-activated protein kinases (SAPKs) regulate transcription. FEBS J 282:3275–3285de Nadal E, Alepuz PM, Posas F (2002) Dealing with osmostress through MAP kinase activation. EMBO Rep 3:735–740de Nadal E, Casadome L, Posas F (2003) Targeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogen-activated protein kinase. Mol Cell Biol 23:229–237de Nadal E, Zapater M, Alepuz PM, Sumoy L, Mas G, Posas F (2004) The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature 427:370–374Duch A, de Nadal E, Posas F (2013a) Dealing with transcriptional outbursts during S phase to protect genomic integrity. J Mol Biol 425:4745–4755Duch A, Felipe-Abrio I, Barroso S, Yaakov G, Garcia-Rubio M, Aguilera A, de Nadal E, Posas F (2013b) Coordinated control of replication and transcription by a SAPK protects genomic integrity. Nature 493:116–119Escote X, Zapater M, Clotet J, Posas F (2004) Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1. Nat Cell Biol 6:997–1002Ferreira C, van Voorst F, Martins A, Neves L, Oliveira R, Kielland-Brandt MC, Lucas C, Brandt A (2005) A member of the sugar transporter family, Stl1p is the glycerol/H+ symporter in Saccharomyces cerevisiae. Mol Biol Cell 16:2068–2076Gonzalez R, Morales P, Tronchoni J, Cordero-Bueso G, Vaudano E, Quiros M, Novo M, Torres-Perez R, Valero E (2016) New genes involved in osmotic stress tolerance in Saccharomyces cerevisiae. Front Microbiol 7:1545Ho YH, Gasch AP (2015) Exploiting the yeast stress-activated signaling network to inform on stress biology and disease signaling. Curr Genet 61:503–511Hohmann S (2015) An integrated view on a eukaryotic osmoregulation system. Curr Genet 61:373–382Hohmann S, Krantz M, Nordlander B (2007) Yeast osmoregulation. Methods Enzymol 428:29–45Hong SP, Carlson M (2007) Regulation of snf1 protein kinase in response to environmental stress. J Biol Chem 282:16838–16845Li SC, Diakov TT, Rizzo JM, Kane PM (2012) Vacuolar H+-ATPase works in parallel with the HOG pathway to adapt Saccharomyces cerevisiae cells to osmotic stress. Eukaryot Cell 11:282–291Maeta K, Izawa S, Inoue Y (2005) Methylglyoxal, a metabolite derived from glycolysis, functions as a signal initiator of the high osmolarity glycerol-mitogen-activated protein kinase cascade and calcineurin/Crz1-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 280:253–260Manzanares-Estreder S, Espi-Bardisa J, Alarcon B, Pascual-Ahuir A, Proft M (2017) Multilayered control of peroxisomal activity upon salt stress in Saccharomyces cerevisiae. Mol Microbiol 104:851–868Mao K, Wang K, Zhao M, Xu T, Klionsky DJ (2011) Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. J Cell Biol 193:755–767Martinez-Montanes F, Pascual-Ahuir A, Proft M (2010) Toward a genomic view of the gene expression program regulated by osmostress in yeast. OMICS 14:619–627Martinez-Pastor M, Proft M, Pascual-Ahuir A (2010) Adaptive changes of the yeast mitochondrial proteome in response to salt stress. OMICS 14:541–552Mas G, de Nadal E, Dechant R, Rodriguez de la Concepcion ML, Logie C, Jimeno-Gonzalez S, Chavez S, Ammerer G, Posas F (2009) Recruitment of a chromatin remodelling complex by the Hog1 MAP kinase to stress genes. EMBO J 28:326–336Mettetal JT, Muzzey D, Gomez-Uribe C, van Oudenaarden A (2008) The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae. Science 319:482–484Molin C, Jauhiainen A, Warringer J, Nerman O, Sunnerhagen P (2009) mRNA stability changes precede changes in steady-state mRNA amounts during hyperosmotic stress. RNA 15:600–614Nadal-Ribelles M, Conde N, Flores O, Gonzalez-Vallinas J, Eyras E, Orozco M, de Nadal E, Posas F (2012) Hog1 bypasses stress-mediated down-regulation of transcription by RNA polymerase II redistribution and chromatin remodeling. Genome Biol 13:R106Pastor MM, Proft M, Pascual-Ahuir A (2009) Mitochondrial function is an inducible determinant of osmotic stress adaptation in yeast. J Biol Chem 284:30307–30317Petelenz-Kurdziel E, Kuehn C, Nordlander B, Klein D, Hong KK, Jacobson T, Dahl P, Schaber J, Nielsen J, Hohmann S, Klipp E (2013) Quantitative analysis of glycerol accumulation, glycolysis and growth under hyper osmotic stress. PLoS Comput Biol 9:e1003084Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Arino J (2000) The transcriptional response of yeast to saline stress. J Biol Chem 275:17249–17255Proft M, Struhl K (2002) Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol Cell 9:1307–1317Proft M, Struhl K (2004) MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction. Cell 118:351–361Proft M, Pascual-Ahuir A, de Nadal E, Arino J, Serrano R, Posas F (2001) Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. EMBO J 20:1123–1133Proft M, Mas G, de Nadal E, Vendrell A, Noriega N, Struhl K, Posas F (2006) The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress. Mol Cell 23:241–250Ratnakumar S, Young ET (2010) Snf1 dependence of peroxisomal gene expression is mediated by Adr1. J Biol Chem 285:10703–10714Regot S, de Nadal E, Rodriguez-Navarro S, Gonzalez-Novo A, Perez-Fernandez J, Gadal O, Seisenbacher G, Ammerer G, Posas F (2013) The Hog1 stress-activated protein kinase targets nucleoporins to control mRNA export upon stress. J Biol Chem 288:17384–17398Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275:8290–8300Rep M, Proft M, Remize F, Tamas M, Serrano R, Thevelein JM, Hohmann S (2001) The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol Microbiol 40:1067–1083Rienzo A, Poveda-Huertes D, Aydin S, Buchler NE, Pascual-Ahuir A, Proft M (2015) Different mechanisms confer gradual control and memory at nutrient- and stress-regulated genes in yeast. Mol Cell Biol 35:3669–3683Romero-Santacreu L, Moreno J, Perez-Ortin JE, Alepuz P (2009) Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae. RNA 15:1110–1120Roy A, Hashmi S, Li Z, Dement AD, Cho KH, Kim JH (2016) The glucose metabolite methylglyoxal inhibits expression of the glucose transporter genes by inactivating the cell surface glucose sensors Rgt2 and Snf3 in yeast. Mol Biol Cell 27:862–871Ruiz-Roig C, Noriega N, Duch A, Posas F, de Nadal E (2012) The Hog1 SAPK controls the Rtg1/Rtg3 transcriptional complex activity by multiple regulatory mechanisms. Mol Biol Cell 23:4286–4296Saito H, Posas F (2012) Response to hyperosmotic stress. Genetics 192:289–318Sekito T, Thornton J, Butow RA (2000) Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p. Mol Biol Cell 11:2103–2115Silva RD, Sotoca R, Johansson B, Ludovico P, Sansonetty F, Silva MT, Peinado JM, Corte-Real M (2005) Hyperosmotic stress induces metacaspase- and mitochondria-dependent apoptosis in Saccharomyces cerevisiae. Mol Microbiol 58:824–834Sole C, Nadal-Ribelles M, de Nadal E, Posas F (2015) A novel role for lncRNAs in cell cycle control during stress adaptation. Curr Genet 61:299–308Tamas MJ, Luyten K, Sutherland FC, Hernandez A, Albertyn J, Valadi H, Li H, Prior BA, Kilian SG, Ramos J, Gustafsson L, Thevelein JM, Hohmann S (1999) Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31:1087–1104Teige M, Scheikl E, Reiser V, Ruis H, Ammerer G (2001) Rck2, a member of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast. Proc Natl Acad Sci USA 98:5625–5630Timon-Gomez A, Proft M, Pascual-Ahuir A (2013) Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast. PLoS One 8:e79405Vanacloig-Pedros E, Bets-Plasencia C, Pascual-Ahuir A, Proft M (2015) Coordinated gene regulation in the initial phase of salt stress adaptation. J Biol Chem 290:10163–10175Warringer J, Hult M, Regot S, Posas F, Sunnerhagen P (2010) The HOG pathway dictates the short-term translational response after hyperosmotic shock. Mol Biol Cell 21:3080–3092Wei CJ, Tanner RD, Malaney GW (1982) Effect of sodium chloride on bakers’ yeast growing in gelatin. Appl Environ Microbiol 43:757–763Westfall PJ, Patterson JC, Chen RE, Thorner J (2008) Stress resistance and signal fidelity independent of nuclear MAPK function. Proc Natl Acad Sci USA 105:12212–12217Ye T, Garcia-Salcedo R, Ramos J, Hohmann S (2006) Gis4, a new component of the ion homeostasis system in the yeast Saccharomyces cerevisiae. Eukaryot Cell 5:1611–1621Yoshida A, Wei D, Nomura W, Izawa S, Inoue Y (2012) Reduction of glucose uptake through inhibition of hexose transporters and enhancement of their endocytosis by methylglyoxal in Saccharomyces cerevisiae. J Biol Chem 287:701–71

    Coordinated gene regulation in the initial phase of salt stress adaptation

    Full text link
    This research was originally published in Journal of Biological Chemistry, 2015 - 16 : 10175- 10163 © the American Society for Biochemistry and Molecular Biology[EN] Stress triggers complex transcriptional responses, which include both gene activation and repression. We used time-resolved reporter assays in living yeast cells to gain insights into the coordination of positive and negative control of gene expression upon salt stress. We found that the repression of housekeeping genes coincides with the transient activation of defense genes and that the timing of this expression pattern depends on the severity of the stress. Moreover, we identified mutants that caused an alteration in the kinetics of this transcriptional control. Loss of function of the vacuolar H+-ATPase (vma1) or a defect in the biosynthesis of the osmolyte glycerol (gpd1) caused a prolonged repression of housekeeping genes and a delay in gene activation at inducible loci. Both mutants have a defect in the relocation of RNA polymerase II complexes at stress defense genes. Accordingly salt-activated transcription is delayed and less efficient upon partially respiratory growth conditions in which glycerol production is significantly reduced. Furthermore, the loss of Hog1 MAP kinase function aggravates the loss of RNA polymerase II from housekeeping loci, which apparently do not accumulate at inducible genes. Additionally the Def1 RNA polymerase II degradation factor, but not a high pool of nuclear polymerase II complexes, is needed for efficient stress-induced gene activation. The data presented here indicate that the finely tuned transcriptional control upon salt stress is dependent on physiological functions of the cell, such as the intracellular ion balance, the protective accumulation of osmolyte molecules, and the RNA polymerase II turnover.This work was supported by Ministerio de Economia y Competitividad Grant BFU2011-23326 (to M. P.).Vanacloig Pedros, ME.; Bets Plasencia, C.; Pascual-Ahuir Giner, MD.; Proft, MH. (2015). Coordinated gene regulation in the initial phase of salt stress adaptation. Journal of Biological Chemistry. 16(290):10163-10175. https://doi.org/10.1074/jbc.M115.637264S101631017516290De Nadal, E., Ammerer, G., & Posas, F. (2011). Controlling gene expression in response to stress. Nature Reviews Genetics, 12(12), 833-845. doi:10.1038/nrg3055Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., … Brown, P. O. (2000). Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Molecular Biology of the Cell, 11(12), 4241-4257. doi:10.1091/mbc.11.12.4241Gasch, A. P., & Werner-Washburne, M. (2002). The genomics of yeast responses to environmental stress and starvation. Functional & Integrative Genomics, 2(4-5), 181-192. doi:10.1007/s10142-002-0058-2Saito, H., & Posas, F. (2012). Response to Hyperosmotic Stress. Genetics, 192(2), 289-318. doi:10.1534/genetics.112.140863De Nadal, E., & Posas, F. (2009). Multilayered control of gene expression by stress-activated protein kinases. The EMBO Journal, 29(1), 4-13. doi:10.1038/emboj.2009.346Hohmann, S. (2009). Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Letters, 583(24), 4025-4029. doi:10.1016/j.febslet.2009.10.069Nadal, E. d., Casadome, L., & Posas, F. (2003). Targeting the MEF2-Like Transcription Factor Smp1 by the Stress-Activated Hog1 Mitogen-Activated Protein Kinase. Molecular and Cellular Biology, 23(1), 229-237. doi:10.1128/mcb.23.1.229-237.2003Martínez-Montañés, F., Pascual-Ahuir, A., & Proft, M. (2010). Toward a Genomic View of the Gene Expression Program Regulated by Osmostress in Yeast. OMICS: A Journal of Integrative Biology, 14(6), 619-627. doi:10.1089/omi.2010.0046Proft, M. (2001). Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. The EMBO Journal, 20(5), 1123-1133. doi:10.1093/emboj/20.5.1123Proft, M., & Serrano, R. (1999). Repressors and Upstream Repressing Sequences of the Stress-RegulatedENA1Gene inSaccharomyces cerevisiae: bZIP Protein Sko1p Confers HOG-Dependent Osmotic Regulation. Molecular and Cellular Biology, 19(1), 537-546. doi:10.1128/mcb.19.1.537Rep, M., Reiser, V., Gartner, U., Thevelein, J. M., Hohmann, S., Ammerer, G., & Ruis, H. (1999). Osmotic Stress-Induced Gene Expression inSaccharomyces cerevisiaeRequires Msn1p and the Novel Nuclear Factor Hot1p. Molecular and Cellular Biology, 19(8), 5474-5485. doi:10.1128/mcb.19.8.5474Ruiz-Roig, C., Noriega, N., Duch, A., Posas, F., & de Nadal, E. (2012). The Hog1 SAPK controls the Rtg1/Rtg3 transcriptional complex activity by multiple regulatory mechanisms. Molecular Biology of the Cell, 23(21), 4286-4296. doi:10.1091/mbc.e12-04-0289Westfall, P. J., Patterson, J. C., Chen, R. E., & Thorner, J. (2008). Stress resistance and signal fidelity independent of nuclear MAPK function. Proceedings of the National Academy of Sciences, 105(34), 12212-12217. doi:10.1073/pnas.0805797105Ariño, J., Aydar, E., Drulhe, S., Ganser, D., Jorrín, J., Kahm, M., … Sychrová, H. (2014). Systems Biology of Monovalent Cation Homeostasis in Yeast. Advances in Microbial Systems Biology, 1-63. doi:10.1016/b978-0-12-800143-1.00001-4Hohmann, S. (2002). Osmotic adaptation in yeast-control of the yeast osmolyte system. Molecular Mechanisms of Water Transport Across Biological Membranes, 149-187. doi:10.1016/s0074-7696(02)15008-xHohmann, S., Krantz, M., & Nordlander, B. (2007). Yeast Osmoregulation. Osmosensing and Osmosignaling, 29-45. doi:10.1016/s0076-6879(07)28002-4Albertyn, J., Hohmann, S., Thevelein, J. M., & Prior, B. A. (1994). GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Molecular and Cellular Biology, 14(6), 4135-4144. doi:10.1128/mcb.14.6.4135Ansell, R., Granath, K., Hohmann, S., Thevelein, J. M., & Adler, L. (1997). The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded byGPD1andGPD2have distinct roles in osmoadaptation and redox regulation. The EMBO Journal, 16(9), 2179-2187. doi:10.1093/emboj/16.9.2179Norbeck, J., Påhlman, A.-K., Akhtar, N., Blomberg, A., & Adler, L. (1996). Purification and Characterization of Two Isoenzymes of DL-Glycerol-3-phosphatase fromSaccharomyces cerevisiae. Journal of Biological Chemistry, 271(23), 13875-13881. doi:10.1074/jbc.271.23.13875Klipp, E., Nordlander, B., Krüger, R., Gennemark, P., & Hohmann, S. (2005). Integrative model of the response of yeast to osmotic shock. Nature Biotechnology, 23(8), 975-982. doi:10.1038/nbt1114Proft, M., & Struhl, K. (2004). MAP Kinase-Mediated Stress Relief that Precedes and Regulates the Timing of Transcriptional Induction. Cell, 118(3), 351-361. doi:10.1016/j.cell.2004.07.016Li, S. C., Diakov, T. T., Rizzo, J. M., & Kane, P. M. (2011). Vacuolar H + -ATPase Works in Parallel with the HOG Pathway To Adapt Saccharomyces cerevisiae Cells to Osmotic Stress. Eukaryotic Cell, 11(3), 282-291. doi:10.1128/ec.05198-11Babazadeh, R., Adiels, C. B., Smedh, M., Petelenz-Kurdziel, E., Goksör, M., & Hohmann, S. (2013). Osmostress-Induced Cell Volume Loss Delays Yeast Hog1 Signaling by Limiting Diffusion Processes and by Hog1-Specific Effects. PLoS ONE, 8(11), e80901. doi:10.1371/journal.pone.0080901Miermont, A., Waharte, F., Hu, S., McClean, M. N., Bottani, S., Leon, S., & Hersen, P. (2013). Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding. Proceedings of the National Academy of Sciences, 110(14), 5725-5730. doi:10.1073/pnas.1215367110Van Wuytswinkel, O., Reiser, V., Siderius, M., Kelders, M. C., Ammerer, G., Ruis, H., & Mager, W. H. (2000). Response of Saccharomyces cerevisiae to severe osmotic stress: evidence for a novel activation mechanism of the HOG MAP kinase pathway. Molecular Microbiology, 37(2), 382-397. doi:10.1046/j.1365-2958.2000.02002.xCook, K. E., & O’Shea, E. K. (2012). Hog1 Controls Global Reallocation of RNA Pol II upon Osmotic Shock in Saccharomyces cerevisiae. G3: Genes|Genomes|Genetics, 2(9), 1129-1136. doi:10.1534/g3.112.003251Nadal-Ribelles, M., Conde, N., Flores, O., González-Vallinas, J., Eyras, E., Orozco, M., … Posas, F. (2012). Hog1 bypasses stress-mediated down-regulation of transcription by RNA polymerase II redistribution and chromatin remodeling. Genome Biology, 13(11), R106. doi:10.1186/gb-2012-13-11-r106Dolz-Edo, L., Rienzo, A., Poveda-Huertes, D., Pascual-Ahuir, A., & Proft, M. (2013). Deciphering Dynamic Dose Responses of Natural Promoters and Single cis Elements upon Osmotic and Oxidative Stress in Yeast. Molecular and Cellular Biology, 33(11), 2228-2240. doi:10.1128/mcb.00240-13Berry, D. B., Guan, Q., Hose, J., Haroon, S., Gebbia, M., Heisler, L. E., … Gasch, A. P. (2011). Multiple Means to the Same End: The Genetic Basis of Acquired Stress Resistance in Yeast. PLoS Genetics, 7(11), e1002353. doi:10.1371/journal.pgen.1002353Guan, Q., Haroon, S., Bravo, D. G., Will, J. L., & Gasch, A. P. (2012). Cellular Memory of Acquired Stress Resistance inSaccharomyces cerevisiae. Genetics, 192(2), 495-505. doi:10.1534/genetics.112.143016Winzeler, E. A. (1999). Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis. Science, 285(5429), 901-906. doi:10.1126/science.285.5429.901Rienzo, A., Pascual-Ahuir, A., & Proft, M. (2012). The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast, 29(6), 219-231. doi:10.1002/yea.2905Alberti, S., Gitler, A. D., & Lindquist, S. (2007). A suite of Gateway®cloning vectors for high-throughput genetic analysis inSaccharomyces cerevisiae. Yeast, 24(10), 913-919. doi:10.1002/yea.1502Aparicio, O., Geisberg, J. V., Sekinger, E., Yang, A., Moqtaderi, Z., & Struhl, K. (2005). Chromatin Immunoprecipitation for Determining the Association of Proteins with Specific Genomic Sequences In Vivo. Current Protocols in Molecular Biology. doi:10.1002/0471142727.mb2103s69Woudstra, E. C., Gilbert, C., Fellows, J., Jansen, L., Brouwer, J., Erdjument-Bromage, H., … Svejstrup, J. Q. (2002). A Rad26–Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature, 415(6874), 929-933. doi:10.1038/415929aCzeko, E., Seizl, M., Augsberger, C., Mielke, T., & Cramer, P. (2011). Iwr1 Directs RNA Polymerase II Nuclear Import. Molecular Cell, 42(2), 261-266. doi:10.1016/j.molcel.2011.02.033Esberg, A., Moqtaderi, Z., Fan, X., Lu, J., Struhl, K., & Byström, A. (2011). Iwr1 Protein Is Important for Preinitiation Complex Formation by All Three Nuclear RNA Polymerases in Saccharomyces cerevisiae. PLoS ONE, 6(6), e20829. doi:10.1371/journal.pone.0020829Rep, M., Albertyn, J., Thevelein, J. M., Prior, B. A., & Hohmann, S. (1999). Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiology, 145(3), 715-727. doi:10.1099/13500872-145-3-715Bouwman, J., Kiewiet, J., Lindenbergh, A., van Eunen, K., Siderius, M., & Bakker, B. M. (2010). Metabolic regulation rather than de novo enzyme synthesis dominates the osmo-adaptation of yeast. Yeast, 28(1), 43-53. doi:10.1002/yea.1819Petelenz-Kurdziel, E., Kuehn, C., Nordlander, B., Klein, D., Hong, K.-K., Jacobson, T., … Klipp, E. (2013). Quantitative Analysis of Glycerol Accumulation, Glycolysis and Growth under Hyper Osmotic Stress. PLoS Computational Biology, 9(6), e1003084. doi:10.1371/journal.pcbi.1003084Dihazi, H., Kessler, R., & Eschrich, K. (2004). High Osmolarity Glycerol (HOG) Pathway-induced Phosphorylation and Activation of 6-Phosphofructo-2-kinase Are Essential for Glycerol Accumulation and Yeast Cell Proliferation under Hyperosmotic Stress. Journal of Biological Chemistry, 279(23), 23961-23968. doi:10.1074/jbc.m312974200Tamas, M. J., Luyten, K., Sutherland, F. C. W., Hernandez, A., Albertyn, J., Valadi, H., … Hohmann, S. (1999). Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Molecular Microbiology, 31(4), 1087-1104. doi:10.1046/j.1365-2958.1999.01248.xOstergaard, S., Olsson, L., Johnston, M., & Nielsen, J. (2000). Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nature Biotechnology, 18(12), 1283-1286. doi:10.1038/82400RIOS, G., FERRANDO, A., & SERRANO, R. (1997). Mechanisms of Salt Tolerance Conferred by Overexpression of theHAL1 Gene inSaccharomyces cerevisiae. Yeast, 13(6), 515-528. doi:10.1002/(sici)1097-0061(199705)13:63.0.co;2-xLi, S. C., & Kane, P. M. (2009). The yeast lysosome-like vacuole: Endpoint and crossroads. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1793(4), 650-663. doi:10.1016/j.bbamcr.2008.08.003Hamilton, C. A., Taylor, G. J., & Good, A. G. (2002). Vacuolar H+-ATPase, but not mitochondrial F1F0-ATPase, is required for NaCl tolerance inSaccharomyces cerevisiae. FEMS Microbiology Letters, 208(2), 227-232. doi:10.1111/j.1574-6968.2002.tb11086.xKellermayer, R. (2003). Extracellular Ca2+ sensing contributes to excess Ca2+ accumulation and vacuolar fragmentation in a pmr1Delta mutant of S. cerevisiae. Journal of Cell Science, 116(8), 1637-1646. doi:10.1242/jcs.00372Wilson, M. D., Harreman, M., Taschner, M., Reid, J., Walker, J., Erdjument-Bromage, H., … Svejstrup, J. Q. (2013). Proteasome-Mediated Processing of Def1, a Critical Step in the Cellular Response to Transcription Stress. Cell, 154(5), 983-995. doi:10.1016/j.cell.2013.07.028Somesh, B. P., Reid, J., Liu, W.-F., Søgaard, T. M. M., Erdjument-Bromage, H., Tempst, P., & Svejstrup, J. Q. (2005). Multiple Mechanisms Confining RNA Polymerase II Ubiquitylation to Polymerases Undergoing Transcriptional Arrest. Cell, 121(6), 913-923. doi:10.1016/j.cell.2005.04.01

    Aplicación de nuevos procesos multicomponente a la síntesis de derivados de quinolina

    Get PDF
    Las principales transformaciones sintéticas desarrolladas en este trabajo fueron: 1. Un nuevo proceso multicomponente para la síntesis de trans‐4‐anilino‐2‐ aril‐1,2,3,4-‐tetrahidroquinolinas y estudio de su aromatización. 2. Transformación de 4‐alquil‐4-‐viniltetrahidroquinolinas en quinolinas, por transposición C4‐C3 o pérdida de una cadena olefínica 3. Uso de 2‐acil‐4‐hidrazono‐1,2,3,4‐tetrahidroquinolinas para la obtención diastereoselectiva de derivados de 2,6‐metanobenzo[e][1,4]diazocina. 4. Desarrollo de la reacción de nitro-Mannich intramolecular para la síntesis diastereoselectiva de tetrahidroquinolinas sustituidas en 2 y 3. 5. Desarrollo del nitrato cérico amónico como catalizador para la reacción de Friedländer‐Borsche y su aplicación a la síntesis de luotoninas. [ABSTRACT]The main synthetic transformations developed in this work were: 1. A new multicomponent process for the synthesis of trans‐4‐anilino‐2‐aryl‐ 1,2,3,4-‐tetrahydroquinolines and studies on their aromatization. 2. Transformation of 4-alkyl­4‐vinyltetrahydroquinolines into quinolines, by C4 to C3 shift or loss of their vinyl side chain. 3. Use of 2‐acyl‐4‐hydrazono‐1,2,3,4‐tetrahydroquinolines for the diastereoselective preparation of 2,6‐metanobenzo[e][1,4]diazocines. 4. Development of the intramolecular nitro-Mannich reaction as a diastereoselective route to 2,3-‐disubstitutes tetrahydroquinolines. 5. Development of ceric ammonium nitrate as a catalyst for the Friedländer‐ Borsche reaction and its application for luotonin synthesis

    Synthesis of Polysubstituted, Functionalized Quinolines through a Metal-Free Domino Process Involving a C<sub>4</sub>–C<sub>3</sub> Functional Group Rearrangement

    No full text
    4-Alkyl-1,2,3,4-tetrahydroquinolines bearing a 4-vinyl unit ending in an electron-withdrawing group were efficiently transformed into polysubstituted, C<sub>3</sub>-functionalized quinolines upon heating in refluxing <i>o</i>-dichlorobenzene, in a domino reaction involving an unusual C<sub>4</sub>–C<sub>3</sub> functional group rearrangement

    Different Pathological Complete Response Rates According to PAM50 Subtype in HER2+ Breast Cancer Patients Treated With Neoadjuvant Pertuzumab/Trastuzumab vs. Trastuzumab Plus Standard Chemotherapy: An Analysis of Real-World Data.

    No full text
    Background: Double blockade with pertuzumab and trastuzumab combined with chemotherapy is the standard neoadjuvant treatment for HER2-positive early breast cancer. Data derived from clinical trials indicates that the response rates differ among intrinsic subtypes of breast cancer. The aim of this study is to determine if these results are valid in real-world patients. Methods: A total of 259 patients treated in eight Spanish hospitals were included and divided into two cohorts: Cohort A (132 patients) received trastuzumab plus standard neoadjuvant chemotherapy (NAC), and Cohort B received pertuzumab and trastuzumab plus NAC (122 patients). Pathological complete response (pCR) was defined as the complete disappearance of invasive tumor cells. Assignment of the intrinsic subtype was realized using the research-based PAM50 signature. Results: There were more HER2-enriched tumors in Cohort A (70 vs. 56%) and more basal-like tumors in Cohort B (12 vs. 2%), with similar luminal cases in both cohorts (luminal A 12 vs. 14%; luminal B 14 vs. 18%). The overall pCR rate was 39% in Cohort A and 61% in Cohort B. Better pCR rates with pertuzumab plus trastuzumab than with trastuzumab alone were also observed in all intrinsic subtypes (luminal PAM50 41 vs. 11.4% and HER2-enriched subtype 73.5 vs. 50%) but not in basal-like tumors (53.3 vs. 50%). In multivariate analysis the only significant variables related to pCR in both luminal PAM50 and HER2-enriched subtypes were treatment with pertuzumab plus trastuzumab (Cohort B) and histological grade 3. Conclusions: With data obtained from patients treated in clinical practice, it has been possible to verify that the addition of pertuzumab to trastuzumab and neoadjuvant chemotherapy substantially increases the rate of pCR, especially in the HER2-enriched subtype but also in luminal subtypes, with no apparent benefit in basal-like tumors

    B-Ring-Aryl Substituted Luotonin A Analogues with a New Binding Mode to the Topoisomerase 1-DNA Complex Show Enhanced Cytotoxic Activity

    No full text
    <div><p>Topoisomerase 1 inhibition is an important strategy in targeted cancer chemotherapy. The drugs currently in use acting on this enzyme belong to the family of the camptothecins, and suffer severe limitations because of their low stability, which is associated with the hydrolysis of the δ-lactone moiety in their E ring. Luotonin A is a natural camptothecin analogue that lacks this functional group and therefore shows a much-improved stability, but at the cost of a lower activity. Therefore, the development of luotonin A analogues with an increased potency is important for progress in this area. In the present paper, a small library of luotonin A analogues modified at their A and B rings was generated by cerium(IV) ammonium nitrate-catalyzed Friedländer reactions. All analogues showed an activity similar or higher than the natural luotonin A in terms of topoisomerase 1 inhibition and some compounds had an activity comparable to that of camptothecin. Furthermore, most compounds showed a better activity than luotonin A in cell cytotoxicity assays. In order to rationalize these results, the first docking studies of luotonin-topoisomerase 1-DNA ternary complexes were undertaken. Most compounds bound in a manner similar to luotonin A and to standard topoisomerase poisons such as topotecan but, interestingly, the two most promising analogues, bearing a 3,5-dimethylphenyl substituent at ring B, docked in a different orientation. This binding mode allows the hydrophobic moiety to be shielded from the aqueous environment by being buried between the deoxyribose belonging to the G(+1) guanine and Arg364 in the scissile strand and the surface of the protein and a hydrogen bond between the D-ring carbonyl and the basic amino acid. The discovery of this new binding mode and its associated higher inhibitory potency is a significant advance in the design of new topoisomerase 1 inhibitors.</p></div

    B-ring substitution improves hydrogen bonding to Arg364.

    No full text
    <p><b>A.</b> Overlay of luotonin A (<b>3a</b>) and compounds <b>3b</b>–<b>e</b> at their binding sites, showing that the presence of the substituent at the C-14 position of ring B induces a rotation of the docking pose that leads to improved hydrogen bonding to Arg364 and hence to a better fit to the binding site. <b>B.</b> Docking of luotonin A showing the position of Asn352, which would interfere with any ring-B substituent. <b>C.</b> Docking of the B-phenyl substituted compound <b>3c,</b> also showing the position of Asn352.</p
    corecore