1,369 research outputs found

    Variability of B and Be stars in the LMC/SMC: binaries and pulsations

    Get PDF
    To study the variability of the 523 B and Be stars observed in the Magellanic clouds with the VLT-FLAMES, we cross-matched the stars of our sample with the photometric database MACHO, which provides for each star an 8 years lightcurve. We searched for long, medium, and short-term periodicity and found the eclipsing binaries in our sample. For these stars, combining, spectroscopy and photometry, we were able to provide information on several systems of stars (systemic velocities, ratios of masses, etc). We also present the ratios of B-binaries to B-non binaries in the LMC/SMC in comparison with the MW. Note that this ratio is also an important issue to understand the mechanism of star-formation at low metallicity. We also found the first multiperiodic B and Be stars in the SMC, in particular the first SMC Beta Cep and SPB, while, according to the models, pulsations were not foreseen in low metallicity environments, i.e. typically in the SMC. Our results show that the instability strips are shifted towards higher temperatures in comparison with the Milky Way' strips of pulsating B-type stars. By the fact that we found more pulsating Be stars than pulsating B stars in the SMC, it seems that the fast rotation favours the presence of pulsations. However, the ratio of pulsating B-type stars to "non"-pulsating B-type stars at low metallicity is lower than at high metallicity.Comment: poster IAUS25

    Nematicidal activity of essential oils and organic amendments from Asteraceae against root-knot nematodes

    Get PDF
    The essential oil of Chrysanthemum coronarium flowerheads showed strong nematicidal activity in vitro and in growthchamber experiments. Essential oil concentrations of 2, 4, 8 and 16 μL mL−1, significantly reduced hatch, J2 survival (determined by final value and area under curves of cumulative percentage hatch or mortality) and reproduction rate of Meloidogyne artiellia in vitro, with the lowest values occurring at 16 μL mL−1. In pot trials with chickpea cv. PV 61, essential oil concentrations of 10–40 μL per 500 cm3 soil, applied on sterile cotton pellets, also significantly reduced the nematode’s reproduction rate. The biological processes of mortality and hatching/reproduction were adequately described by the monomolecular and expanded negative exponential models, respectively. Effectiveness of soil amendment with either flowers, leaves, roots or seeds of C. coronarium, and flowers from several species of Asteraceae (Chrysanthemum segetum, Calendula maritima, Calendula officinalis and Calendula suffruticosa) at 5 g per 500 cm3 soil was tested for suppression of M. artiellia and growth of chickpea cv. PV 61 under growth-chamber conditions. In these tests, flowers of all five Asteraceae species and various parts of C. coronarium significantly reduced reproduction rates of M. artiellia, by 83·0–95·9%, with the minimum rates occurring in infected chickpea plants amended with flowers of C. officinalis and C. suffruticosa. The in vitro and in planta results suggest that the essential oil of C. coronarium and organic amendments from Asteraceae species may serve as nematicides.This research, part of a PhD study by P.P., was supported by grant SC98-022 and a fellowship from the Instituto Nacional de Tecnologías Agroalimentarias (INIA).Peer reviewe

    Advanced displays and natural user interfaces to support learning

    Full text link
    [EN] Advanced displays and Natural User Interfaces (NUI) are a very suitable combination for developing systems to provide an enhanced and richer user experience. This combination can be appropriate in several fields and has not been extensively exploited. One of the fields that this combination is especially suitable for is education. Nowadays, children are growing up playing with computer games, using mobile devices, and other technological devices. New learning methods that use these new technologies can help in the learning process. In this paper, two new methods that use advanced displays and NUI for learning about a period of history are presented. One of the methods is an autostereoscopic system that lets children see themselves as a background in the game and renders the elements in 3D without the need for special glasses; the second method is a frontal projection system that projects the image on a table in 2D and works similarly to a touch table. The Microsoft Kinect© is used in both systems for the interaction. A comparative study to check different aspects was carried out. A total of 128 children from 7 to 11 years old participated in the study. From the results, we observed that the different characteristics of the systems did not influence the children s acquired knowledge, engagement, or satisfaction. There were statistically significant differences for depth perception and presence in which the autostereoscopic system was scored higher. However, of the two systems, the children considered the frontal projection to be easier to use. We would like to highlight that the scores for the two systems and for all the questions were very high. These results suggest that games of this kind (advanced displays and NUI) could be appropriate educational games and that autostereoscopy is a technology to exploit in their development.This work was funded by the Spanish Ministry of Science and Innovation through the APRENDRA project (TIN2009-14319-C02-01).Martín San José, JF.; Juan, M.; Mollá Vayá, RP.; Vivó Hernando, RA. (2017). Advanced displays and natural user interfaces to support learning. Interactive Learning Environments. https://doi.org/10.1080/10494820.2015.1090455

    Evaluation of log Po/w values of drugs from some molecular structure calculation software

    Get PDF
    Predictive software packages to estimate the lipophilicity of molecules have become key tools in the new drug design. Six different well-known computational programs including the classical BioByte-clogP and the GALAS algorithm offered by ACDlabs were evaluated through a set of 103 drugs with different structures and functionalities. To evaluate the predictions accuracy, reliable experimental log Po/w values for the whole testing set were carefully selected. The best estimations are performed by GALAS/logP based on the fragmental method, corrected according to the similarity with compounds included in the software training set

    An Augmented Reality App to Learn to Interpret the Nutritional Information on Labels of Real Packaged Foods

    Full text link
    [EN] Healthy eating habits involve controlling your diet. It is important to know how to interpret the nutritional information of the packaged foods that you consume. These packaged foods are usually processed and contain carbohydrates and fats. Monitoring carbohydrates intake is particularly important for weight-loss diets and for some pathologies such as diabetes. In this paper, we present an augmented reality app for helping interpret the nutritional information about carbohydrates in real packaged foods with the shape of boxes or cans. The app tracks the full object and guides the user in finding the surface or area of the real package where the information about carbohydrates is located using augmented reality and helps the user to interpret this information. The portions of carbohydrates (also called carb choices or carb servings) that correspond to the visualized food are shown. We carried out a study to check the effectiveness of our app regarding learning outcomes, usability, and perceived satisfaction. A total of 40 people participated in the study (20 men and 20 women). The participants were between 14 and 55 years old. The results reported that their initial knowledge about carb choices was very low. This indicates that education about nutritional information in packaged foods is needed. An analysis of the pre-knowledge and post-knowledge questionnaires showed that the users had a statistically significant increase in knowledge about carb choices using our app. Gender and age did not influence the knowledge acquired. The participants were highly satisfied with our app. In conclusion, our app and similar apps could be used to effectively learn how to interpret the nutritional information on the labels of real packaged foods and thus help users acquire healthy life habits.Juan, M.; Charco, JL.; García García, I.; Mollá Vayá, RP. (2019). An Augmented Reality App to Learn to Interpret the Nutritional Information on Labels of Real Packaged Foods. Frontiers in Computer Science. 1(1):1-16. https://doi.org/10.3389/fcomp.2019.00001S11611Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1-11. doi:10.1016/j.edurev.2016.11.002Azuma, R. T. (1997). A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments, 6(4), 355-385. doi:10.1162/pres.1997.6.4.355Barsom, E. Z., Graafland, M., & Schijven, M. P. (2016). Systematic review on the effectiveness of augmented reality applications in medical training. Surgical Endoscopy, 30(10), 4174-4183. doi:10.1007/s00464-016-4800-6Billinghurst, M., & Kato, H. (2002). Collaborative augmented reality. Communications of the ACM, 45(7), 64-70. doi:10.1145/514236.514265Bowman, D. A., & McMahan, R. P. (2007). Virtual Reality: How Much Immersion Is Enough? Computer, 40(7), 36-43. doi:10.1109/mc.2007.257Calle-Bustos, A.-M., Juan, M.-C., García-García, I., & Abad, F. (2017). An augmented reality game to support therapeutic education for children with diabetes. PLOS ONE, 12(9), e0184645. doi:10.1371/journal.pone.0184645Chatzopoulos, D., Bermejo, C., Huang, Z., & Hui, P. (2017). Mobile Augmented Reality Survey: From Where We Are to Where We Go. IEEE Access, 5, 6917-6950. doi:10.1109/access.2017.2698164Chen, P., Liu, X., Cheng, W., & Huang, R. (2016). A review of using Augmented Reality in Education from 2011 to 2016. Lecture Notes in Educational Technology, 13-18. doi:10.1007/978-981-10-2419-1_2Domhardt, M., Tiefengrabner, M., Dinic, R., Fötschl, U., Oostingh, G. J., Stütz, T., … Ginzinger, S. W. (2015). Training of Carbohydrate Estimation for People with Diabetes Using Mobile Augmented Reality. Journal of Diabetes Science and Technology, 9(3), 516-524. doi:10.1177/1932296815578880Furió, D., González-Gancedo, S., Juan, M.-C., Seguí, I., & Costa, M. (2013). The effects of the size and weight of a mobile device on an educational game. Computers & Education, 64, 24-41. doi:10.1016/j.compedu.2012.12.015Furió, D., González-Gancedo, S., Juan, M.-C., Seguí, I., & Rando, N. (2013). Evaluation of learning outcomes using an educational iPhone game vs. traditional game. Computers & Education, 64, 1-23. doi:10.1016/j.compedu.2012.12.001Harris, J. L., Bargh, J. A., & Brownell, K. D. (2009). Priming effects of television food advertising on eating behavior. Health Psychology, 28(4), 404-413. doi:10.1037/a0014399Ibáñez, M.-B., & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers & Education, 123, 109-123. doi:10.1016/j.compedu.2018.05.002Juan, M. C., Alcaniz, M., Monserrat, C., Botella, C., Banos, R. M., & Guerrero, B. (2005). Using Augmented Reality to Treat Phobias. IEEE Computer Graphics and Applications, 25(6), 31-37. doi:10.1109/mcg.2005.143Juan, M.-C., García-García, I., Mollá, R., & López, R. (2018). Users’ Perceptions Using Low-End and High-End Mobile-Rendered HMDs: A Comparative Study. Computers, 7(1), 15. doi:10.3390/computers7010015Juan, M.-C., Mendez-Lopez, M., Perez-Hernandez, E., & Albiol-Perez, S. (2014). Augmented Reality for the Assessment of Children’s Spatial Memory in Real Settings. PLoS ONE, 9(12), e113751. doi:10.1371/journal.pone.0113751Kerawalla, L., Luckin, R., Seljeflot, S., & Woolard, A. (2006). «Making it real»: exploring the potential of augmented reality for teaching primary school science. Virtual Reality, 10(3-4), 163-174. doi:10.1007/s10055-006-0036-4Kesim, M., & Ozarslan, Y. (2012). Augmented Reality in Education: Current Technologies and the Potential for Education. Procedia - Social and Behavioral Sciences, 47, 297-302. doi:10.1016/j.sbspro.2012.06.654Li, W., Nee, A., & Ong, S. (2017). A State-of-the-Art Review of Augmented Reality in Engineering Analysis and Simulation. Multimodal Technologies and Interaction, 1(3), 17. doi:10.3390/mti1030017Macias M, A. I., Gordillo S, L. G., & Camacho R, E. J. (2012). Hábitos alimentarios de niños en edad escolar y el papel de la educación para la salud. Revista chilena de nutrición, 39(3), 40-43. doi:10.4067/s0717-75182012000300006Augmented Reality Market by Offering (Hardware (Sensor, Displays and Projectors, Cameras), and Software), Device Type (Head-Mounted, Head-Up, Handheld), Application (Enterprise, Consumer, Commercial, Automotive) and Geography - Global forecast to 2023Augmented and Virtual Reality in Healthcare Market by Offering (Hardware and Software), Device Type, End User, Application (Patient Care Management, Medical Training and Education, Pharmacy Management, Surgery), and Geography - Global Forecast to 2023Meola, A., Cutolo, F., Carbone, M., Cagnazzo, F., Ferrari, M., & Ferrari, V. (2016). Augmented reality in neurosurgery: a systematic review. Neurosurgical Review, 40(4), 537-548. doi:10.1007/s10143-016-0732-9Nincarean, D., Alia, M. B., Halim, N. D. A., & Rahman, M. H. A. (2013). Mobile Augmented Reality: The Potential for Education. Procedia - Social and Behavioral Sciences, 103, 657-664. doi:10.1016/j.sbspro.2013.10.385Nishida, C., & Martinez Nocito, F. (2007). FAO/WHO Scientific Update on carbohydrates in human nutrition: introduction. European Journal of Clinical Nutrition, 61(S1), S1-S4. doi:10.1038/sj.ejcn.1602935Palmarini, R., Erkoyuncu, J. A., Roy, R., & Torabmostaedi, H. (2018). A systematic review of augmented reality applications in maintenance. Robotics and Computer-Integrated Manufacturing, 49, 215-228. doi:10.1016/j.rcim.2017.06.002Patrick, H., & Nicklas, T. A. (2005). A Review of Family and Social Determinants of Children’s Eating Patterns and Diet Quality. Journal of the American College of Nutrition, 24(2), 83-92. doi:10.1080/07315724.2005.10719448R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing2018Radu, I. (2014). Augmented reality in education: a meta-review and cross-media analysis. Personal and Ubiquitous Computing, 18(6), 1533-1543. doi:10.1007/s00779-013-0747-yRollo, M. E., Bucher, T., Smith, S., & Collins, C. E. (2017). The effect of an augmented reality aid on error associated with serving food. Journal of Nutrition & Intermediary Metabolism, 8, 90. doi:10.1016/j.jnim.2017.04.111RStudio: Integrated Development Environment for R (Version 1.1.463). Boston, MA2018Schmalsteig, D., & Hollerer, T. (2016). Augmented reality. ACM SIGGRAPH 2016 Courses. doi:10.1145/2897826.2927365Shelton, B. E., & Hedley, N. R. (s. f.). Using augmented reality for teaching Earth-Sun relationships to undergraduate geography students. The First IEEE International Workshop Agumented Reality Toolkit,. doi:10.1109/art.2002.1106948Sielhorst, T., Feuerstein, M., & Navab, N. (2008). Advanced Medical Displays: A Literature Review of Augmented Reality. Journal of Display Technology, 4(4), 451-467. doi:10.1109/jdt.2008.2001575SIRAKAYA, M., & ALSANCAK SIRAKAYA, D. (2018). Trends in Educational Augmented Reality Studies: A Systematic Review. Malaysian Online Journal of Educational Technology, 6(2), 60-74. doi:10.17220/mojet.2018.02.005Number of Mobile Phone Users Worldwide From 2015 to 2020 (in billions)2016STORY, M., NANNEY, M. S., & SCHWARTZ, M. B. (2009). Schools and Obesity Prevention: Creating School Environments and Policies to Promote Healthy Eating and Physical Activity. Milbank Quarterly, 87(1), 71-100. doi:10.1111/j.1468-0009.2009.00548.xVávra, P., Roman, J., Zonča, P., Ihnát, P., Němec, M., Kumar, J., … El-Gendi, A. (2017). Recent Development of Augmented Reality in Surgery: A Review. Journal of Healthcare Engineering, 2017, 1-9. doi:10.1155/2017/4574172Witmer, B. G., & Singer, M. J. (1998). Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence: Teleoperators and Virtual Environments, 7(3), 225-240. doi:10.1162/105474698565686Healthy Diet2015Zhu, E., Hadadgar, A., Masiello, I., & Zary, N. (2014). Augmented reality in healthcare education: an integrative review. PeerJ, 2, e469. doi:10.7717/peerj.46

    Source of Variant Creutzfeldt-Jakob Disease outside United Kingdom

    Get PDF
    Bovine imports during the 1980s and the first half of the 1990s from the UK contributed substantially to the global spread of this disease
    corecore