496 research outputs found
Advancements in the Measurement of the Cryosphere Using Geophysics — Introduction
Frozen regions of the earth are known as the cryosphere. The arctic, Antarctica, permafrost, ice sheets, and glaciers are some of the most challenging places to measure subsurface parameters, but they can also be some of the most important places to science and engineering research due to their susceptibility to environmental change. Ground-based, airborne, and space-borne geophysical methods are deployed to observe targets below the ground or in ice that may be difficult or impossible to measure using conventional direct observations and measurements. The papers in this special section address recent advances in instrumentation development and deployment and computational capabilities that have advanced cryosphere geophysical sciences. As such, many of these papers discuss the science that the methodology has helped reveal
Ice-rich permafrost thaw under sub-aquatic conditions
Degradation of sub-aquatic permafrost can release large quantities of methane into the atmosphere, impact offshore drilling activities, and affect coastal erosion. The degradation rate depends on the duration of inundation, warming rate, sediment characteristics, the coupling of the bottom to the atmosphere through bottom-fast ice, and brine injections into the sediment. The relative importance of these controls on the rate of sub-aquatic permafrost degradation, however, remains poorly understood. This poster presents a conceptual evaluation of sub-aquatic permafrost thaw mechanisms and an approach to their representation using one-dimensional modelling of heat and dissolved salt diffusion. We apply this model to permafrost degradation observed below Peatball Lake on the Alaska North Slope and compare modelling results to talik geometry information inferred from transient electromagnetic (TEM) soundings
The importance of sub-peat carbon storage as shown by data from Dartmoor, UK
Peatlands are highly valued for their range of ecosystem services, including distinctive biodiversity, agricultural uses, recreational amenities, water provision, river flow regulation and their capacity to store carbon. There have been a range of estimates of carbon stored in peatlands in the United Kingdom, but uncertainties remain, in particular with regard to depth and bulk density of peat. In addition, very few studies consider the full profile with depth in carbon auditing. The importance of sub-peat soils within peatland carbon stores has been recognized, but remains poorly understood and is included rarely within peatland carbon audits. This study examines the importance of the carbon store based on a study of blanket peat on Dartmoor, UK, by estimating peat depths in a 4 × 1 km survey area using ground penetrating radar (GPR), extraction of 43 cores across a range of peat depth, and estimation of carbon densities based on measures of loss-on-ignition and bulk density. Comparison of GPR estimates of peat depth with core depths shows excellent agreement, to provide the basis for a detailed understanding of the distribution of peat depths within the survey area. Carbon densities of the sub-peat soils are on average 78 and 53 kg C/m3 for the overlying blanket peat. There is considerable spatial variability in the estimates of total carbon from each core across the survey area, with values ranging between 56.5 kg C/m2 (1.01 m total depth of peat and soil) and 524 kg C/m2 (6.63 m total depth). Sub-peat soil carbon represents between 4 and 28 per cent (mean 13.5) of the total carbon stored, with greater values for shallower peat. The results indicate a significant and previously unaccounted store of carbon within blanket peat regions which should be included in future calculations of overall carbon storage. It is argued that this store needs to be considered in carbon audits. © 2013 British Society of Soil Science
The effect of sampling effort on estimates of methane ebullition from peat
We investigated the effect of sample size and sampling duration on methane bubble flux (ebullition) estimates from peat using a computer model. A field scale (10 m), seasonal (> 100 days) simulation of ebullition from a two-dimensional structurally-varying peat profile was modelled at fine spatial resolution (1 mm × 1 mm). The spatial and temporal scale of this simulation was possible because of the computational efficiency of the reduced complexity approach that was implemented, and patterns of simulated ebullition were consistent with those found in the field and laboratory. The simulated ebullition from the peat profile suggested that decreases in peat porosity – which cause increases in gas storage – produce ebullition that becomes increasingly patchy in space and erratic in time. By applying different amounts of spatial and temporal sampling effort it was possible to determine the uncertainty in ebullition estimates from the peatland. The results suggest that traditional methods to measure ebullition can equally overestimate and underestimate flux by 20% and large ebullition events can lead to large overestimations of flux when sampling effort is low. Our findings support those of field studies, and we recommend that ebullition should be measured frequently (hourly to daily) and at many locations (n > 14)
Ebullition of methane from peatlands: Does peat act as a signal shredder?
Bubbling (ebullition) of greenhouse gases, particularly methane, from peatlands has been attributed to environmental forcings, such as changes in atmospheric pressure. However, observations from peat soils suggest that ebullition and environmental forcing may not always be correlated and that interactions between bubbles and the peat structure may be the cause of such decoupling. To investigate this possibility, we used a simple computer model (Model of Ebullition and Gas storAge) to simulate methane ebullition from a model peat. We found that lower porosity peat can store methane bubbles for lengthy periods of time, effectively buffering or moderating ebullition so that it no longer reflects bubble production signals. Our results suggest that peat structure may act as a “signal shredder” and needs to be taken into account when measuring and modeling ebullition
Integrated time-lapse geoelectrical imaging of wetland hydrological processes
Wetlands provide crucial habitats, are critical in the global carbon cycle, and act as key biogeochemical and hydrological buffers. The effectiveness of these services is mainly controlled by hydrological processes, which can be highly variable both spatially and temporally due to structural complexity and seasonality. Spatial analysis of 2D geoelectrical monitoring data integrated into the interpretation of conventional hydrological data has been implemented to provide a detailed understanding of hydrological processes in a riparian wetland. This study shows that a combination of processes can define the resistivity signature of the shallow subsurface, highlighting the seasonality of these processes and its corresponding effect on biogeochemical processesthe wetland hydrology. Groundwater exchange between peat and the underlying river terrace deposits, spatially and temporally defined by geoelectrical imaging and verified by point sensor data, highlighted the groundwater dependent nature of the wetland. A 30 % increase in peat resistivity was shown to be caused by a nearly entire exchange of the saturating groundwater. For the first time, we showed that automated interpretation of geoelectrical data can be used to quantify shrink-swell of expandable soils, affecting hydrological parameters, such as, porosity, water storage capacity, and permeability. This study shows that an integrated interpretation of hydrological and geophysical data can significantly improve the understanding of wetland hydrological processes. Potentially, this approach can provide the basis for the evaluation of ecosystem services and may aid in the optimization of wetland management strategies
Longitudinal study on skeletal changes during and after bionator therapy using metallic implants
Aim: To demonstrate the magnitude and direction of skeletal changes in the maxilla and mandible during and after the use of bionator, as well as their rotations. Methods: Partial superimposition on the maxilla and mandible on the metallic implants and total superimposition on the cranial base were performed at three periods, T1 before bionator therapy, T2 after bionator therapy, and T3 5.68 years after T2. Results: There was total clockwise maxillary rotation and counterclockwise mandibular rotation, in the North American technique, throughout the study period, as well as extensive remodeling on the condylar region, especially in vertical direction and on the gonial region in horizontal direction. Conclusions: The total maxillary rotation seemed to be significantly affected by therapy than the mandible. There was a clear change in the direction of condylar remodeling compared to the period of bionator therapy and posterior bionator therapy. Considering the entire study period, it was observed that intra-matrix rotation of the maxilla and mandible masked their total rotation, causing minimum changes in the matrix rotation
Alvenaria participante em pórtico de concreto pré-moldado
O presente trabalho apresenta estudo sobre alvenaria estrutural construída dentro de pórticos em concreto pré-moldado dimensionada como parte do sistema de contraventamento das edificações, definindo esse tipo de elemento como Alvenaria Participante. São identificados os principais detalhes construtivos das paredes de alvenaria participante que influenciam o comportamento do pórtico pré-moldado frente às ações horizontais. No Brasil, a contribuição dessas paredes não é considerada no dimensionamento da estrutura devido à falta de informações e à sua complexidade, o que leva a projetos mais conservadores. Neste estudo, identifica-se os principais detalhes construtivos das paredes de alvenaria participante que influenciam no contraventamento das edificações. Também, são consideradas as variáveis e mecanismos que algumas das principais normas internacionais utilizam na análise de alvenaria participante em pórticos para a estabilidade das estruturas. Além de, realizar a comparação entre esses mecanismos normatizados e o modelo realizado a partir do uso de ferramenta computacional utilizando o Método de Elementos Finitos (MEF). Mesmo existindo unanimidade quanto aos efeitos de enrijecimento no pórtico pela alvenaria participante, percebe-se que a formalização de sua consideração no contraventamento de edifícios de estruturas pré-moldadas requer um maior conhecimento do meio técnico. Este trabalho visa, portanto, contribuir para divulgar e analisar criticamente os detalhes construtivos e os métodos usuais para consideração da alvenaria participante no projeto de edifícios
Characterization of non-Gaussianity in the snow distributions of various landscapes
Seasonal snowpack is an important predictor of the water resources available in the following spring and early-summer melt season. Total basin snow water equivalent (SWE) estimation usually requires a form of statistical analysis that is implicitly built upon the Gaussian framework. However, it is important to characterize the non-Gaussian properties of snow distribution for accurate large-scale SWE estimation based on remotely sensed or sparse ground-based observations. This study quantified non-Gaussianity using sample negentropy; the Kullback–Leibler divergence from the Gaussian distribution for field-observed snow depth data from the North Slope, Alaska; and three representative SWE distributions in the western USA from the Airborne Snow Observatory (ASO). Snowdrifts around lakeshore cliffs and deep gullies can bring moderate non-Gaussianity in the open, lowland tundra of North Slope, Alaska, while the ASO dataset suggests that subalpine forests may effectively suppress the non-Gaussianity of snow distribution. Thus, non-Gaussianity is found in areas with partial snow cover and wind-induced snowdrifts around topographic breaks on slopes and on other steep terrain features. The snowpacks may be considered weakly Gaussian in coastal regions with open tundra in Alaska and alpine and subalpine terrains in the western USA if the land is completely covered by snow. The wind-induced snowdrift effect can potentially be partitioned from the observed snow spatial distribution guided by its Gaussianity.</p
- …
