6,691 research outputs found
Quantitative Stability and Optimality Conditions in Convex Semi-Infinite and Infinite Programming
This paper concerns parameterized convex infinite (or semi-infinite)
inequality systems whose decision variables run over general
infinite-dimensional Banach (resp. finite-dimensional) spaces and that are
indexed by an arbitrary fixed set T . Parameter perturbations on the right-hand
side of the inequalities are measurable and bounded, and thus the natural
parameter space is . Based on advanced variational analysis, we
derive a precise formula for computing the exact Lipschitzian bound of the
feasible solution map, which involves only the system data, and then show that
this exact bound agrees with the coderivative norm of the aforementioned
mapping. On one hand, in this way we extend to the convex setting the results
of [4] developed in the linear framework under the boundedness assumption on
the system coefficients. On the other hand, in the case when the decision space
is reflexive, we succeed to remove this boundedness assumption in the general
convex case, establishing therefore results new even for linear infinite and
semi-infinite systems. The last part of the paper provides verifiable necessary
optimality conditions for infinite and semi-infinite programs with convex
inequality constraints and general nonsmooth and nonconvex objectives. In this
way we extend the corresponding results of [5] obtained for programs with
linear infinite inequality constraints
Effects of Selective Deletion of Tyrosine Hydroxylase from Kisspeptin Cells on Puberty and Reproduction in Male and Female Mice.
The neuropeptide kisspeptin, encoded by Kiss1, regulates reproduction by stimulating GnRH secretion. Kiss1-syntheizing neurons reside primarily in the hypothalamic anteroventral periventricular (AVPV/PeN) and arcuate (ARC) nuclei. AVPV/PeN Kiss1 neurons are sexually dimorphic, with females expressing more Kiss1 than males, and participate in estradiol (E2)-induced positive feedback control of GnRH secretion. In mice, most AVPV/PeN Kiss1 cells coexpress tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis (in this case, dopamine). Dopamine treatment can inhibit GnRH neurons, but the function of dopamine signaling arising specifically from AVPV/PeN Kiss1 cells is unknown. We generated a novel TH flox mouse and used Cre-Lox technology to selectively ablate TH specifically from Kiss1 cells. We then examined the effects of selective TH knock-out on puberty and reproduction in both sexes. In control mice, 90% of AVPV/PeN Kiss1 neurons coexpressed TH, whereas in mice lacking TH exclusively in Kiss1 cells (termed Kiss THKOs), TH was successfully absent from virtually all Kiss1 cells. Despite this absence of TH, both female and male Kiss THKOs displayed normal body weights, puberty onset, and basal gonadotropin levels in adulthood, although testosterone (T) was significantly elevated in adult male Kiss THKOs. The E2-induced LH surge was unaffected in Kiss THKO females, and neuronal activation status of kisspeptin and GnRH cells was also normal. Supporting this, fertility and fecundity were normal in Kiss THKOs of both sexes. Thus, despite high colocalization of TH and Kiss1 in the AVPV/PeN, dopamine produced in these cells is not required for puberty or reproduction, and its function remains unknown
Planar Orthogonal Polynomials As Type I Multiple Orthogonal Polynomials
A recent result of S.-Y. Lee and M. Yang states that the planar orthogonal
polynomials orthogonal with respect to a modified Gaussian measure are also
multiple orthogonal polynomials of type II on a contour in the complex plane.
We show that the same polynomials are also type I orthogonal polynomials on a
contour, provided the exponents in the weight are integer. From this
orthogonality, we derive several equivalent Riemann-Hilbert problems. The proof
is based on the fundamental identity of Lee and Yang, which we establish using
a new technique.Comment: 20 pages, 1 figur
Gene deficiency in activating Fcγ receptors influences the macrophage phenotypic balance and reduces atherosclerosis in mice
Immunity contributes to arterial inflammation during atherosclerosis. Oxidized low-density lipoproteins induce an autoimmune response characterized by specific antibodies and immune complexes in atherosclerotic patients. We hypothesize that specific Fcγ receptors for IgG constant region participate in atherogenesis by regulating the inflammatory state of lesional macrophages. In vivo we examined the role of activating Fcγ receptors in atherosclerosis progression using bone marrow transplantation from mice deficient in γ-chain (the common signaling subunit of activating Fcγ receptors) to hyperlipidemic mice. Hematopoietic deficiency of Fcγ receptors significantly reduced atherosclerotic lesion size, which was associated with decreased number of macrophages and T lymphocytes, and increased T regulatory cell function. Lesions of Fcγ receptor deficient mice exhibited increased plaque stability, as evidenced by higher collagen and smooth muscle cell content and decreased apoptosis. These effects were independent of changes in serum lipids and antibody response to oxidized low-density lipoproteins. Activating Fcγ receptor deficiency reduced pro-inflammatory gene expression, nuclear factor-κB activity, and M1 macrophages at the lesion site, while increasing anti-inflammatory genes and M2 macrophages. The decreased inflammation in the lesions was mirrored by a reduced number of classical inflammatory monocytes in blood. In vitro, lack of activating Fcγ receptors attenuated foam cell formation, oxidative stress and pro-inflammatory gene expression, and increased M2-associated genes in murine macrophages. Our study demonstrates that activating Fcγ receptors influence the macrophage phenotypic balance in the artery wall of atherosclerotic mice and suggests that modulation of Fcγ receptor-mediated inflammatory responses could effectively suppress atherosclerosis
Copper-catalyzed enantioselective synthesis of β-Boron β-Amino Esters
In this report, the enantioselective, copper-catalyzed borylation of β-amidoacrylates is disclosed. A broad variety of biologically important α-aminoboronates has been prepared with consistently high levels of enantiocontrol using an inexpensive copper catalyst and a commercially available chiral ligand. The method can be applied to the synthesis of novel boron-containing dipeptides and hemiboronatesWe thank the European Research Council (ERC-337776),
MINECO (CTQ2016-78779-R), National Science Foundation
(1151092 and 1543699) for financial support. M. T. thanks
MICINN for RyC contrac
Supporting conference attendees with visual decision making interfaces
Recent efforts in recommender systems research focus increasingly on human factors affecting recommendation acceptance, such as transparency and user control. In this paper, we present IntersectionExplorer, a scalable visualization to interleave the output of several recommender engines with user-contributed relevance information, such as bookmarks and tags. Two user studies at conferences indicate that this approach is well suited for technical audiences in smaller venues, and allowed the identification of applicability limitations for less technical audiences attending larger events. Copyright held by the owner/author(s)
- …