21 research outputs found
Design, development, and scientific performance of the Raman Laser Spectrometer EQM on the 2020 ExoMars (ESA) Mission
The Raman Laser Spectrometer (RLS) is one of the three Pasteur Payload instruments located within the rover analytical laboratory drawer (ALD), for ESAâs Aurora exploration programme, ExoMars 2020 mission. The instrument will analyse the crushed surface and subsurface samples that are positioned below the Raman optical head by the ALD carousel. The RLS engineering and qualification model (EQM) was delivered to ESA at the end of 2017, after a wide technical and scientific test characterization campaign. The scientific campaign comprised instrument calibration and detailed evaluation of the scientific requirements and overall performance. For spectral calibration, continuous emission standard lamps (such as Hg-Ar, Ne, and Xe) were utilized, as well as Raman spectra of pure liquids typically used as standards (cyclohexane and carbon tetrachloride (CCl4)). In addition, Raman spectra of the RLS calibration target (CT), a small disc of polyethylene terephthalate (PET) were obtained at various temperatures. This target, placed inside the rover, will be used for both Instrument health checks and calibration activities throughout Mars operations. For the scientific requirements and performance evaluations, several liquid and solid samples were analysed under a wide range of ambient conditions. The obtained spectral band parameters (peak position, relative peak intensity, peak width, and peak profile) were evaluated. Also, the instrument response (in terms of SNR) was characterized at different integration times and detector operating temperatures. In this paper, we provide a description of the development, verification, functional test, and overall scientific performance of the RLS instrument developed for ExoMars. Particular attention is placed on the performance of the EQM, which is the most representative instrument, in terms of engineering and functionality, of the flight model (FM) and in addition is used for performing all the mechanical, thermal, and radiation tests necessary for space qualification (for planetary applications). The data presented and analysed here, comprise part of the overall dataset obtained during the full instrument characterization campaign conducted at INTA before and during delivery and integration of the EQM in the rover ALD at TAS-I facilities (Torino, Italy). The results obtained confirm that the full functionality and scientific performance of the RLS instrument was maintained after integration.Proyecto MINECO Retos de la Sociedad. Ref. ESP2017-87690-C3-1-
The Raman Laser Spectrometer for the ExoMars Rover Mission to Mars
The Raman Laser Spectrometer (RLS) on board the ESA/Roscosmos ExoMars 2020 mission will provide
precise identification of the mineral phases and the possibility to detect organics on the Red Planet. The RLS
will work on the powdered samples prepared inside the Pasteur analytical suite and collected on the surface and
subsurface by a drill system. Raman spectroscopy is a well-known analytical technique based on the inelastic
scattering by matter of incident monochromatic light (the Raman effect) that has many applications in laboratory
and industry, yet to be used in space applications. Raman spectrometers will be included in two Mars
rovers scheduled to be launched in 2020. The Raman instrument for ExoMars 2020 consists of three main units:
(1) a transmission spectrograph coupled to a CCD detector; (2) an electronics box, including the excitation laser
that controls the instrument functions; and (3) an optical head with an autofocus mechanism illuminating and
collecting the scattered light from the spot under investigation. The optical head is connected to the excitation
laser and the spectrometer by optical fibers. The instrument also has two targets positioned inside the rover
analytical laboratory for onboard Raman spectral calibration. The aim of this article was to present a detailed
description of the RLS instrument, including its operation on Mars. To verify RLS operation before launch and
to prepare science scenarios for the mission, a simulator of the sample analysis chain has been developed by the
team. The results obtained are also discussed. Finally, the potential of the Raman instrument for use in field
conditions is addressed. By using a ruggedized prototype, also developed by our team, a wide range of
terrestrial analog sites across the world have been studied. These investigations allowed preparing a large
collection of real, in situ spectra of samples from different geological processes and periods of Earth evolution.
On this basis, we are working to develop models for interpreting analog processes on Mars during the mission.
Key Words: Raman spectroscopyâExoMars missionâInstruments and techniquesâPlanetary sciencesâMars
mineralogy and geochemistryâSearch for life on Mars. Astrobiology 17, 627â65
The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description
On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds
The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase
The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray
spectrometer, studied since 2015 for flying in the mid-30s on the Athena space
X-ray Observatory, a versatile observatory designed to address the Hot and
Energetic Universe science theme, selected in November 2013 by the Survey
Science Committee. Based on a large format array of Transition Edge Sensors
(TES), it aims to provide spatially resolved X-ray spectroscopy, with a
spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of
5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement
Review (SRR) in June 2022, at about the same time when ESA called for an
overall X-IFU redesign (including the X-IFU cryostat and the cooling chain),
due to an unanticipated cost overrun of Athena. In this paper, after
illustrating the breakthrough capabilities of the X-IFU, we describe the
instrument as presented at its SRR, browsing through all the subsystems and
associated requirements. We then show the instrument budgets, with a particular
emphasis on the anticipated budgets of some of its key performance parameters.
Finally we briefly discuss on the ongoing key technology demonstration
activities, the calibration and the activities foreseen in the X-IFU Instrument
Science Center, and touch on communication and outreach activities, the
consortium organisation, and finally on the life cycle assessment of X-IFU
aiming at minimising the environmental footprint, associated with the
development of the instrument. Thanks to the studies conducted so far on X-IFU,
it is expected that along the design-to-cost exercise requested by ESA, the
X-IFU will maintain flagship capabilities in spatially resolved high resolution
X-ray spectroscopy, enabling most of the original X-IFU related scientific
objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental
Astronomy with minor editin
The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase
The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by âERDF A way of making Europeâ. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033
Impedance Matching Between SQUID and Warm Amplifier for TES Readout in TDM for the ATHENA X-IFU Instrument
International audienceCurrent cryogenic instruments require an increasingly high number of superconducting detectors. Large multiplexing factors are thus needed, increasing the bandwidth of the readout signals. In the specific case of transition edge sensors (TES), a cold amplification stage using superconducting quantum interference devices is usually coupled to a room temperature low-noise amplifier (LNA). A resistive harness up to a few meters long connects these two stages carrying signals with bandwidth of up to a few tens of MHz. In this context, it is reasonable to consider the possibility of impedance matching at the input of the LNA. In this paper, we present the impact of such impedance matching for the ATHENA X-IFU instrument, which uses TES in time-division multiplexing (Barret in Exp Astron 55:373â426 2023)
The Mars Microphone Onboard SuperCam
The âMars Microphoneâ is one of the five measurement techniques of SuperCam, an improved version of the ChemCam instrument that has been functioning aboard the Curiosity rover for several years. SuperCam is located on the roverâs Mast Unit, to take advantage of the unique pointing capabilities of the roverâs head. In addition to being the first instrument to record sounds on Mars, the SuperCam Microphone can address several original scientific objectives: the study of sound associated with laser impacts on Martian rocks to better understand their mechanical properties, the improvement of our knowledge of atmospheric phenomena at the surface of Mars such as atmospheric turbulence, convective vortices, dust lifting processes and wind interactions with the rover itself. The microphone also helps our understanding of the sound signature of the different movements of the rover: operations of the robotic arm and the mast, driving on the rough surface of Mars, monitoring of the pumps, etc. The SuperCam Microphone was delivered to the SuperCam team in early 2019 and integrated at the Jet Propulsion Laboratory (JPL), Pasadena, CA with the complete SuperCam instrument. The Mars 2020 Mission launched in July 2020 and landed on Mars on February 18, 2021. The mission operations are expected to last until at least August 2023. The microphone is operating perfectly
A 50 mK test bench for demonstration of the readout chain of Athena/X-IFU
International audienceThe X-IFU (X-ray Integral Field Unit) onboard the large ESA mission Athena (Advanced Telescope for High ENergy Astrophysics), planned to be launched in the mid 2030s, will be a cryogenic X-ray imaging spectrometer operating at 55 mK. It will provide unprecedented spatially resolved high-resolution spectroscopy (2.5 eV FWHM up to 7 keV) in the 0.2-12 keV energy range thanks to its array of TES (Transition Edge Sensors) microcalorimeters of more than 2k pixel. The detection chain of the instrument is developed by an international collaboration: the detector array by NASA/GSFC, the cold electronics by NIST, the cold amplifier by VTT, the WFEE (Warm Front-End Electronics) by APC, the DRE (Digital Readout Electronics) by IRAP and a focal plane assembly by SRON. To assess the operation of the complete readout chain of the X-IFU, a 50 mK test bench based on a kilo-pixel array of microcalorimeters from NASA/GSFC has been developed at IRAP in collaboration with CNES. Validation of the test bench has been performed with an intermediate detection chain entirely from NIST and Goddard. Next planned activities include the integration of DRE and WFEE prototypes in order to perform an end-to-end demonstration of a complete X-IFU detection chain
A 50 mK test bench for demonstration of the readout chain of Athena/X-IFU
International audienceThe X-IFU (X-ray Integral Field Unit) onboard the large ESA mission Athena (Advanced Telescope for High ENergy Astrophysics), planned to be launched in the mid 2030s, will be a cryogenic X-ray imaging spectrometer operating at 55 mK. It will provide unprecedented spatially resolved high-resolution spectroscopy (2.5 eV FWHM up to 7 keV) in the 0.2-12 keV energy range thanks to its array of TES (Transition Edge Sensors) microcalorimeters of more than 2k pixel. The detection chain of the instrument is developed by an international collaboration: the detector array by NASA/GSFC, the cold electronics by NIST, the cold amplifier by VTT, the WFEE (Warm Front-End Electronics) by APC, the DRE (Digital Readout Electronics) by IRAP and a focal plane assembly by SRON. To assess the operation of the complete readout chain of the X-IFU, a 50 mK test bench based on a kilo-pixel array of microcalorimeters from NASA/GSFC has been developed at IRAP in collaboration with CNES. Validation of the test bench has been performed with an intermediate detection chain entirely from NIST and Goddard. Next planned activities include the integration of DRE and WFEE prototypes in order to perform an end-to-end demonstration of a complete X-IFU detection chain
A 50 mK test bench for demonstration of the readout chain of Athena/X-IFU
International audienceThe X-IFU (X-ray Integral Field Unit) onboard the large ESA mission Athena (Advanced Telescope for High ENergy Astrophysics), planned to be launched in the mid 2030s, will be a cryogenic X-ray imaging spectrometer operating at 55 mK. It will provide unprecedented spatially resolved high-resolution spectroscopy (2.5 eV FWHM up to 7 keV) in the 0.2-12 keV energy range thanks to its array of TES (Transition Edge Sensors) microcalorimeters of more than 2k pixel. The detection chain of the instrument is developed by an international collaboration: the detector array by NASA/GSFC, the cold electronics by NIST, the cold amplifier by VTT, the WFEE (Warm Front-End Electronics) by APC, the DRE (Digital Readout Electronics) by IRAP and a focal plane assembly by SRON. To assess the operation of the complete readout chain of the X-IFU, a 50 mK test bench based on a kilo-pixel array of microcalorimeters from NASA/GSFC has been developed at IRAP in collaboration with CNES. Validation of the test bench has been performed with an intermediate detection chain entirely from NIST and Goddard. Next planned activities include the integration of DRE and WFEE prototypes in order to perform an end-to-end demonstration of a complete X-IFU detection chain