274 research outputs found

    Role of endocannabinoids in regulating drug dependence

    Get PDF
    This review will discuss the latest knowledge of how the endocannabinoid system might be involved in treating addiction to the most common illicit drugs. Experimental models are providing increasing evidence for the pharmacological management of endocannabinoid signaling not only to block the direct reinforcing effects of cannabis, opioids, nicotine and ethanol, but also for preventing relapse to the various drugs of abuse, including opioids, cocaine, nicotine, alcohol and metamphetamine. Preclinical and clinical studies suggest that the endocannabinoid system can be manipulated by the CBI receptor antagonist SR141716A, that might constitute a new generation of compounds for treating addiction across different classes of abused drugs

    A molecular basis of analgesic tolerance to cannabinoids

    Get PDF
    Clinical usage of cannabinoids in chronic pain states is limited by their central side effects and the pharmacodynamic tolerance that sets in after repeated dosage. Analgesic tolerance to cannabinoids in vivo could be caused by agonist-induced downregulation and intracellular trafficking of cannabinoid receptors, but little is known about the molecular mechanisms involved. We show here that the type 1 cannabinoid receptor (CB1) interacts physically with G-protein-associated sorting protein 1 (GASP1), a protein that sorts receptors in lysosomal compartments destined for degradation. CB1 - GASP1 interaction was observed to be required for agonist-induced downregulation of CB1 in spinal neurons ex vivo as well as in vivo. Importantly, uncoupling CB1 from GASP1 in mice in vivo abrogated tolerance toward cannabinoid-induced analgesia. These results suggest that GASP1 is a key regulator of the fate of CB1 after agonist exposure in the nervous system and critically determines analgesic tolerance to cannabinoids

    Effects of Cannabinoids on Caffeine Contractures in Slow and Fast Skeletal Muscle Fibers of the Frog

    Get PDF
    The effect of cannabinoids on caffeine contractures was investigated in slow and fast skeletal muscle fibers using isometric tension recording. In slow muscle fibers, WIN 55,212-2 (10 and 5 μM) caused a decrease in tension. These doses reduced maximum tension to 67.43 ± 8.07% (P = 0.02, n = 5) and 79.4 ± 14.11% (P = 0.007, n = 5) compared to control, respectively. Tension-time integral was reduced to 58.37 ± 7.17% and 75.10 ± 3.60% (P = 0.002, n = 5), respectively. Using the CB1 cannabinoid receptor agonist ACPA (1 μM) reduced the maximum tension of caffeine contractures by 68.70 ± 11.63% (P = 0.01, n = 5); tension-time integral was reduced by 66.82 ± 6.89% (P = 0.02, n = 5) compared to controls. When the CB1 receptor antagonist AM281 was coapplied with ACPA, it reversed the effect of ACPA on caffeine-evoked tension. In slow and fast muscle fibers incubated with the pertussis toxin, ACPA had no effect on tension evoked by caffeine. In fast muscle fibers, ACPA (1 μM) also decreased tension; the maximum tension was reduced by 56.48 ± 3.4% (P = 0.001, n = 4), and tension-time integral was reduced by 57.81 ± 2.6% (P = 0.006, n = 4). This ACPA effect was not statistically significant with respect to the reduction in tension in slow muscle fibers. Moreover, we detected the presence of mRNA for the cannabinoid CB1 receptor on fast and slow skeletal muscle fibers, which was significantly higher in fast compared to slow muscle fiber expression. In conclusion, our results suggest that in the slow and fast muscle fibers of the frog cannabinoids diminish caffeine-evoked tension through a receptor-mediated mechanism

    Localisation and Function of the Endocannabinoid System in the Human Ovary

    Get PDF
    Although anandamide (AEA) had been measured in human follicular fluid and is suggested to play a role in ovarian follicle and oocyte maturity, its exact source and role in the human ovary remains unclear.Immunohistochemical examination of normal human ovaries indicated that the endocannabinoid system was present and widely expressed in the ovarian medulla and cortex with more intense cannabinoid receptor 2 (CB2) than CB1 immunoreactivity in the granulosa cells of primordial, primary, secondary, tertiary follicles, corpus luteum and corpus albicans. The enzymes, fatty acid amide hydrolase (FAAH) and N-acyclphosphatidylethanolamine-phospholipase D (NAPE-PLD), were only found in growing secondary and tertiary follicles and corpora lutea and albicantes. The follicular fluid (FF) AEA concentrations of 260 FF samples, taken from 37 infertile women undergoing controlled ovarian hyperstimulation for in vitro fertilisation and intracytoplasmic sperm injection with embryo transfer, were correlated with ovarian follicle size (P = 0.03). Significantly higher FF AEA concentrations were also observed in mature follicles (1.43+/-0.04 nM; mean+/-SEM) compared to immature follicles (1.26+/-0.06 nM), P = 0.0142 and from follicles containing morphologically assessed mature oocytes (1.56+/-0.11 nM) compared to that containing immature oocytes (0.99+/-0.09 nM), P = 0.0011. ROC analysis indicated that a FF AEA level of 1.09 nM could discriminate between mature and immature oocytes with 72.2% sensitivity and 77.14% specificity, whilst plasma AEA levels and FF AEA levels on oocyte retrieval day were not significantly different (P = 0.23).These data suggest that AEA is produced in the ovary, is under hormonal control and plays a role in folliculogenesis, preovulatory follicle maturation, oocyte maturity and ovulation

    Reversible Disruption of Pre-Pulse Inhibition in Hypomorphic-Inducible and Reversible CB1-/- Mice

    Get PDF
    Although several genes are implicated in the pathogenesis of schizophrenia, in animal models for such a severe mental illness only some aspects of the pathology can be represented (endophenotypes). Genetically modified mice are currently being used to obtain or characterize such endophenotypes. Since its cloning and characterization CB1 receptor has increasingly become of significant physiological, pharmacological and clinical interest. Recently, its involvement in schizophrenia has been reported. Among the different approaches employed, gene targeting permits to study the multiple roles of the endocannabinoid system using knockout (-/-) mice represent a powerful model but with some limitations due to compensation. To overcome such a limitation, we have generated an inducible and reversible tet-off dependent tissue-specific CB1-/- mice where the CB1R is re-expressed exclusively in the forebrain at a hypomorphic level due to a mutation (IRh-CB1-/-) only in absence of doxycycline (Dox). In such mice, under Dox+ or vehicle, as well as in wild-type (WT) and CB1-/-, two endophenotypes motor activity (increased in animal models of schizophrenia) and pre-pulse inhibition (PPI) of startle reflex (disrupted in schizophrenia) were analyzed. Both CB1-/- and IRh-CB1-/- showed increased motor activity when compared to WT animals. The PPI response, unaltered in WT and CB1-/- animals, was on the contrary highly and significantly disrupted only in Dox+ IRh-CB1-/- mice. Such a response was easily reverted after either withdrawal from Dox or haloperidol treatment. This is the first Inducible and Reversible CB1-/- mice model to be described in the literature. It is noteworthy that the PPI disruption is not present either in classical full CB1-/- mice or following acute administration of rimonabant. Such a hypomorphic model may provide a new tool for additional in vivo and in vitro studies of the physiological and pathological roles of cannabinoid system in schizophrenia and in other psychiatric disorders

    Discrimination between two different grades of human glioma based on blood vessel infrared spectral imaging

    Get PDF
    Gliomas are brain tumours classified into four grades with increasing malignancy from I to IV. The development and the progression of malignant glioma largely depend on the tumour vascularization. Due to their tissue heterogeneity, glioma cases can be difficult to classify into a specific grade using the gold standard of histological observation, hence the need to base classification on a quantitative and reliable analytical method for accurately grading the disease. Previous works focused specifically on vascularization study by Fourier transform infrared (FTIR) spectroscopy, proving this method to be a way forward to detect biochemical changes in the tumour tissue not detectable by visual techniques. In this project, we employed FTIR imaging using a focal plane array (FPA) detector and globar source to analyse large areas of glioma tumour tissue sections via molecular fingerprinting in view of helping to define markers of the tumour grade. Unsupervised multivariate analysis (hierarchical cluster analysis and principal component analysis) of blood vessel spectral data, retrieved from the FPA images, revealed the fine structure of the borderline between two areas identified by a pathologist as grades III and IV. Spectroscopic indicators are found capable of discriminating different areas in the tumour tissue and are proposed as biomolecular markers for potential future use of grading gliomas. Graphical Abstract Infrared imaging of glioma blood vessels provides a means to revise the pathologists' line of demarcation separating grade III (GIII) from grade IV (GIV) parts
    corecore