69 research outputs found

    Tracking leatherback turtles from the world's largest rookery: assessing threats across the South Atlantic

    Get PDF
    addresses: Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Exeter, UK.notes: PMCID: PMC3119016types: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.Despite extensive work carried out on leatherback turtles (Dermochelys coriacea) in the North Atlantic and Indo-Pacific, very little is known of the at-sea distribution of this species in the South Atlantic, where the world's largest population nests in Gabon (central Africa). This paucity of data is of marked concern given the pace of industrialization in fisheries with demonstrable marine turtle bycatch in African/Latin American waters. We tracked the movements of 25 adult female leatherback turtles obtaining a range of fundamental and applied insights, including indications for methodological advancement. Individuals could be assigned to one of three dispersal strategies, moving to (i) habitats of the equatorial Atlantic, (ii) temperate habitats off South America or (iii) temperate habitats off southern Africa. While occupying regions with high surface chlorophyll concentrations, these strategies exposed turtles to some of the world's highest levels of longline fishing effort, in addition to areas with coastal gillnet fisheries. Satellite tracking highlighted that at least 11 nations should be involved in the conservation of this species in addition to those with distant fishing fleets. The majority of tracking days were, however, spent in the high seas, where effective implementation of conservation efforts is complex to achieve

    A method of determining where to target surveillance efforts in heterogeneous epidemiological systems

    Get PDF
    The spread of pathogens into new environments poses a considerable threat to human, animal, and plant health, and by extension, human and animal wellbeing, ecosystem function, and agricultural productivity, worldwide. Early detection through effective surveillance is a key strategy to reduce the risk of their establishment. Whilst it is well established that statistical and economic considerations are of vital importance when planning surveillance efforts, it is also important to consider epidemiological characteristics of the pathogen in question—including heterogeneities within the epidemiological system itself. One of the most pronounced realisations of this heterogeneity is seen in the case of vector-borne pathogens, which spread between ‘hosts’ and ‘vectors’—with each group possessing distinct epidemiological characteristics. As a result, an important question when planning surveillance for emerging vector-borne pathogens is where to place sampling resources in order to detect the pathogen as early as possible. We answer this question by developing a statistical function which describes the probability distributions of the prevalences of infection at first detection in both hosts and vectors. We also show how this method can be adapted in order to maximise the probability of early detection of an emerging pathogen within imposed sample size and/or cost constraints, and demonstrate its application using two simple models of vector-borne citrus pathogens. Under the assumption of a linear cost function, we find that sampling costs are generally minimised when either hosts or vectors, but not both, are sampled

    A novel approach to estimate the distribution, density and at-sea risks of a centrally-placed mobile marine vertebrate

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Formulating management strategies for mobile marine species is challenging, as knowledge is required of distribution, density, and overlap with putative threats. As a step towards assimilating knowledge, ecological niche models may identify likely suitable habitats for species, but lack the ability to enumerate species densities. Traditionally, this has been catered for by sightings-based distance sampling methods that may have practical and logistical limitations. Here we describe a novel method to estimate at-sea distribution and densities of a marine vertebrate, using historic aerial surveys of Gabonese leatherback turtle (Dermochelys coriacea) nesting beaches and satellite telemetry data of females at sea. We contextualise modelled patterns of distribution with putative threat layers of boat traffic, including fishing vessels and large ship movements, using Vessel Monitoring System (VMS) and Automatic Identification System (AIS) data. We identify key at-sea areas in which protection for inter-nesting leatherback turtles could be considered within the coastal zone of Gabonese Exclusive Economic Zone (EEZ). Our approach offers a holistic technique that merges multiple datasets and methodologies to build a deeper and insightful knowledge base with which to manage known activities at sea. As such, the methodologies presented in this study could be applied to other species of sea turtles for cumulative assessments; and with adaptation, may have utility in defining critical habitats for other central-place foragers such as pinnipeds, or sea bird species. Although our analysis focuses on a single species, we suggest that putative threats identified within this study (fisheries, seismic activity, general shipping) likely apply to other mobile marine vertebrates of conservation concern within Gabonese and central African coastal waters, such as olive ridley sea turtles (Lepidochelys olivacea), humpback dolphins (Sousa teuszii) and humpback whales (Megaptera novaeangliae).We thank the following for support and funding: CARPE (Central African Regional Program for the Environment, Darwin Initiative, EAZA ShellShock Campaign, Gabon Sea Turtle Partnership with funding from the Marine Turtle Conservation Fund (United States Fish and Wildlife Service, U.S. Department of the Interior), Harvest Energy, Large Pelagics Research Centre at the University of Massachusetts (Boston), NERC, Vaalco Energy and the Wildlife Conservation Society. We are sincerely grateful to the field teams and logistics staff who assisted in the aerial and ground surveys and with field-site assistance. BJG and MJW receive funding from the Natural Environment Research Council (NE/J012319/1), the European Union and the Darwin Initiative

    The football is medicine plaform-scientific evidence, large-scale implementation of evidence-based concepts and future perspectives

    Get PDF
    The idea that football can be used as therapy and as a high-intensity and literally breath-taking training regime goes back centuries. To take one prominent example, the French philosopher Voltaire describes in the Book of Fate (1747), how a patient is cured by playing with a sacred football: “… full-blown and carefully covered with the softest Leather. You must kick this Bladder, Sir, once a Day about your Hall for a whole Hour together, with all the Vigour and Activity you possibly can”, “Ogul, upon making the first Experiment, was ready to expire for want of Breath”, “In short, our Doctor in about 8 days Time, performed an absolute Cure. His Patient was as brisk, active and gay, as One in the Bloom of his Youth.”1 Today, Voltaire and his main character, philosopher Zadig, have been proved right: Football is indeed a breath-taking activity and it can be used as therapy. Albeit today's recommendations suggest a lower training frequency, longer training periods and encourage group-based training, and say that any football can be applied

    A community approach to mortality prediction in sepsis via gene expression analysis.

    Get PDF
    Improved risk stratification and prognosis prediction in sepsis is a critical unmet need. Clinical severity scores and available assays such as blood lactate reflect global illness severity with suboptimal performance, and do not specifically reveal the underlying dysregulation of sepsis. Here, we present prognostic models for 30-day mortality generated independently by three scientific groups by using 12 discovery cohorts containing transcriptomic data collected from primarily community-onset sepsis patients. Predictive performance is validated in five cohorts of community-onset sepsis patients in which the models show summary AUROCs ranging from 0.765-0.89. Similar performance is observed in four cohorts of hospital-acquired sepsis. Combining the new gene-expression-based prognostic models with prior clinical severity scores leads to significant improvement in prediction of 30-day mortality as measured via AUROC and net reclassification improvement index These models provide an opportunity to develop molecular bedside tests that may improve risk stratification and mortality prediction in patients with sepsis.y NIGMS Glue Grant Legacy Award R24GM102656. J.F.B.-M., R.A., and E.T. were supported by Instituto de Salud Carlos III (grants EMER07/050, PI13/02110, PI16/01156). R.J.L. was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under award number UL1TR001417. The CAPSOD study was supported by NIH (U01AI066569, P20RR016480, HHSN266200400064C). P.K. is supported by grants from Bill Melinda Gates Foundation, R01 AI125197-01, 1U19AI109662, and U19AI057229, outside the submitted work. The GAinS study was supported by the National Institute for Health Research through the Comprehensive Clinical Research Network for patient recruitment; Wellcome Trust (Grants 074318 [to J.C.K.], and 090532/Z/09/Z [core facilities Wellcome Trust Centre for Human Genetics including High-Throughput Genomics Group]); European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant agreement no. 281824 (to J.C.K.), the Medical Research Council (98082 [to J.C.K.]); UK Intensive Care Society; and NIHR Oxford Biomedical Research Centre. The Duke HAI study was supported by a research agreement between Duke University and Novartis Vaccines and Diagnostics, Inc. According to the terms of the agreement, representatives of the sponsor had an opportunity to review and comment on a draft of the manuscript. The authors had full control of the analyses, the preparation of the manuscript, and the decision to submit the manuscript for publication. For the University of Florida ‘P50’ Study, data were obtained from the Sepsis and Critically Illness Research Center (SCIRC) at the University of Florida College of Medicine, which is supported in part by NIGMS P50 GM111152. This work was supported by Defense Advanced Research Projects Agency and the Army Research Office through Grant W911NF-15-1-0107.

    Impact of inactivity and exercise on the vasculature in humans

    Get PDF
    The effects of inactivity and exercise training on established and novel cardiovascular risk factors are relatively modest and do not account for the impact of inactivity and exercise on vascular risk. We examine evidence that inactivity and exercise have direct effects on both vasculature function and structure in humans. Physical deconditioning is associated with enhanced vasoconstrictor tone and has profound and rapid effects on arterial remodelling in both large and smaller arteries. Evidence for an effect of deconditioning on vasodilator function is less consistent. Studies of the impact of exercise training suggest that both functional and structural remodelling adaptations occur and that the magnitude and time-course of these changes depends upon training duration and intensity and the vessel beds involved. Inactivity and exercise have direct “vascular deconditioning and conditioning” effects which likely modify cardiovascular risk
    corecore