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Abstract Xylella fastidiosa is an important plant

pathogen that attacks several plants of economic

importance. Once restricted to the Americas, the

bacterium, which causes olive quick decline syn-

drome, was discovered near Lecce, Italy in 2013.

Since the initial outbreak, it has invaded 23,000 ha of

olives in the Apulian Region, southern Italy, and is of

great concern throughout Mediterranean basin. There-

fore, predicting its spread and estimating the efficacy

of control are of utmost importance. As data on this

invasive infectious disease are poor, we have devel-

oped a spatially-explicit simulation model for X.

fastidiosa to provide guidance for predicting spread in

the early stages of invasion and inform management

strategies. The model qualitatively and quantitatively

predicts the patterns of spread. We model control

zones currently employed in Apulia, showing that

increasing buffer widths decrease infection risk

beyond the control zone, but this may not halt the

spread completely due to stochastic long-distance

jumps caused by vector dispersal. Therefore, manage-

ment practices should aim to reduce vector long-

distance dispersal. We find optimal control scenarios

that minimise control effort while reducing X. fastid-

iosa spread maximally—suggesting that increasing

buffer zone widths should be favoured over surveil-

lance efforts as control budgets increase. Our model

highlights the importance of non-olive hosts which

increase the spread rate of the disease and may lead to

an order of magnitude increase in risk. Many aspects

of X. fastidiosa disease invasion remain uncertain and

hinder forecasting; we recommend future studies

investigating quantification of the infection growth

rate, and short and long distance dispersal.
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Introduction

The magnitude of negative impacts on the economy,

native biota and human society caused by non-native

invasive species is increasing rapidly (Pimentel et al.

2005; Simberloff et al. 2013). This fact holds for

emerging infectious diseases (EIDs) of plants, and the

prevalence of invasive plant diseases is increasing due

to trade and transport globalization (Hulme 2009;

Dehnen-Schmutz et al. 2010), as well as climate

change (Gautam et al. 2013). There is a clear need to

develop strategies to manage the emergence, spread

and impacts of these diseases (Baker and Bode 2016),

but for many EIDs, novel environments or a general

lack of data make predicting future distributions or

rates of spread difficult. Despite this, modelling efforts

can help to understand better the spread of new

diseases as well as provide testable theory and

guidance on effective control strategies. For example,

Richter et al. (2013) use a spread model to show that an

optimally-designed management plan consisting of

survey and eradication can drastically reduce the

spread of allergenic ragweed, Ambrosia artemisiifolia,

resulting in substantial saving in medical costs. Parnell

et al. (2015) use a simple spread model to reveal a rule

of thumb for early detection surveillance strategies for

EIDs of plants. However, it is rare to use spread

models in plant health risk assessment in contrast to

non-mechanistic species distribution models (Chap-

man et al. 2015).

Here we derive and analyse a novel spread model to

investigate control of an emerging outbreak of Xylella

fastidiosa in Italy (Martelli et al. 2015), modelling a

buffer zone management strategy. X. fastidiosa is a

xylem-limited Gram-negative bacterium and the

recognised agent of a number of severe and econom-

ically-important diseases, including Pierce’s disease

of grapevines, citrus variegated chlorosis (CVC), and

other disorders of perennial crops and landscape plants

(Purcell and Hopkins 1996). Once restricted to the

Americas, a new invasive strain, known as CoDiRO

(Saponari et al. 2013), was discovered near Lecce,

Italy in October 2013 (Loconsole et al. 2014) and is the

causal agent of olive quick decline syndrome (OQDS)

(Saponari et al. 2016). Since the initial outbreak, the

disease has spread through the majority of the olive

trees (Olea europaea) in Lecce province (23,000 ha)

(EFSA PLH Panel (EFSA Panel on Plant Health)

2015). X. fastidiosa CoDiRO (referred to as X.

fastidiosa hereafter) is spreading northward and is

threatening olive production throughout Italy and

beyond (Martelli 2015; Bosso et al. 2016a, b), and has

attracted significant media attention (Abbott 2015;

Nadeau 2015; Stokstad 2015). The X. fastidiosa

bacterium is generally transmitted by various species

of xylem-feeding bugs (Homoptera, Auchenorrhyn-

cha), which are widespread (Elbeaino et al. 2014).

Specifically, in olives in Apulia, Italy, X. fastidiosa is

vectored by the froghopper Philaenus spumarius

(Saponari et al. 2014b). Currently, there is no known

cure for this deadly disease of olives and the only

approaches to control are to destroy the host trees and

create buffer zones around them or to manage the

insect vector population by insecticides or removal of

their weed habitats (European Union 2015).

The outbreak in southern Italy is characterised by

extensive leaf scorch and dieback of olive trees, which

has caused significant economic loss (Stokstad 2015).

X. fastidiosa has a very broad range of known host

plants in Europe, including many grown agricultur-

ally, and hence the disease could have a large impact

on food production (EFSA PLH Panel (EFSA Panel on

Plant Health) 2015). Pierce’s disease in grapevines has

been estimated to cost California $104.4 million per

annum (Tumber et al. 2014), although it is difficult to

infer the risks of X. fastidiosa in Europe because of the

ecological and taxonomic complexity of this pathogen

and the fact that the biota, as well as climatic

conditions, in Europe are different from those in the

Americas (EFSA PLH Panel (EFSA Panel on Plant

Health) 2015).

Recently, specific and compulsory measures to

control the X. fastidiosa epidemic have been designed

and implemented (European Union 2015). The mea-

sures are based on an integrated pest management

strategy that includes insecticide applications against

the vector, agronomic measures to suppress nymphal

stages of the vector on weeds and removal of infected

and uninfected hosts. Demarcated areas and a buffer

zone have been introduced across the peninsula to try

and stop X. fastidiosa spreading further northward

(European Union 2015). However, there are no data to

suggest how well these countermeasures will perform.

Thus the value of a predictive mechanistic model

would be to provide some preliminary estimates of

control effectiveness, which in turn may aid in

determining whether a control policy needs to be
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improved or abandoned. In addition, the importance of

olives for human livelihoods in the region means the

strategy of removing diseased and healthy trees is

extremely controversial (Abbott 2015), which has led

to a disparity between legislation and implementation

(Nadeau 2015).

While studies on this disease are ongoing, quan-

tifiable data and measurements on its spread are

scarce, and this is compounded by differences in the

bacterial strain, host, vector and environment com-

pared to X. fastidiosa infestations in other parts of the

world (EFSA PLH Panel (EFSA Panel on Plant

Health) 2015). Therefore, predicting the extent of

spread and its impacts are extremely difficult, and

hence assessing the efficacy of control measures are

even more problematic. One approach to investigate

the extent of potential spread of the disease is to use

species distribution modelling (Hoddle 2004; Bosso

et al. 2016a, b). This correlative approach uses

statistical fitting to predict the potential distribution

of species in geographic space on the basis of their

known distribution in environmental space. As such,

these static models fail to incorporate mechanisms of

spread and thus cannot predict any spatial–temporal

dynamics (e.g. where the disease may spread to at a

future point in time) (Dormann et al. 2012). Con-

versely, detailed mechanistic models require known

parameter values, but since the epidemiological data

differs from previous X. fastidiosa outbreaks com-

pared to the current outbreak, using past data in a

detailed mechanistic spread models is likely to lead to

misinformation. Simple statistical models of spread

require spatio-temporal data for fitting (e.g. Gilbert

et al. 2004) or directly-measured model parameters

(e.g. Parnell et al. 2015), neither of which exist for the

outbreak of X. fastidiosa in Apulia. Due to these data

limitations we constructed a simple mechanistic

model which is validated against the current spatial

distribution of positive, laboratory-tested cases of the

disease.

In this paper, we build upon a novel mechanistic

model for the spread of X. fastidiosa in Apulia

(Chapman et al. 2015) and show that it qualitatively

and quantitatively fits the observed pattern of spread.

Using the spread model we test the control strategies

currently being employed, namely the eradication

zone (EZ) and buffer zone (BZ). The efficacy of these

control strategies are then discussed as well as their

sensitivities to changes in control effort and

surveillance efficiency, as well as the role of alterna-

tive hosts. Because this is an emerging disease, the

parameter values used in the model are uncertain, and

so the primary aim of this paper is to assess

qualitatively the major processes likely to govern

spread and effectiveness of control strategies. Quan-

titative predictions require better empirical data, and

the model can also indicate which data are most

critical.

Methods

We model the spread of X. fastidiosa using a spatially

explicit simulation model, building upon the spread

model presented in Chapman et al. (2015) (see Case

Study 5), which we briefly describe in the sections

below. The model runs over the Apulian region at a

1 km2 gridded resolution and at a yearly temporal

scale to correspond with the seasonality of the vector

which only feeds on olive trees in the summer months

when host grasses dry-out (EFSA PLH Panel (EFSA

Panel on Plant Health) 2015). X. fastidiosa modelled

spread has two distinct phases: local infection growth

within a grid cell (i.e. progression of disease within the

grid cell as a fraction of trees infected); and dispersal

between grid cells. This approach is well suited to the

underlying epidemiological mechanisms of vector

spread and phenology (Chapman et al. 2015; EFSA

PLH Panel (EFSA Panel on Plant Health) 2015).

Chapman et al. (2015) showed that the model repro-

duces the qualitative patterns of X. fastidiosa spread in

Apulia, Italy. In this paper, we use this framework to

provide estimates of the accuracy of the underlying

spread model by comparing risk analysis with spatial

infection data. We then extend the model to include

spatially explicit buffer zone control strategies across

the Apulian peninsula which provide implementation

guidelines for policy. Full Matlab code of this

simulation model is available on GitHub (White

et al. 2016).

Local growth

To model the local infection growth in a grid cell we

use a Gompertz equation to represent the fraction of

infected host trees over time, denoted by N(t).

Gottwald et al. (1993) studied the progression of

citrus variegated chlorosis (CVC) in Brazil and found

Modelling the spread and control of Xylella fastidiosa 1827

123



that a Gompertz model best fitted the progression data.

The progression of X. fastidiosa infection in olive trees

in Italy is thought to be much faster than that in citrus

in Brazil, but we assume that the progression will have

a similar sigmoidal shape. It should be noted that

complex temperature/seasonal dynamics are likely to

affect the disease incidence (Laranjeira et al. 2000),

but this is currently unknown for OQDS. Hence, we

assume a continuous time Gompertz equation is given

by

N tð Þ ¼ Kexp �Bexp �Atð Þ½ �: ð1Þ

The parameter B is related to the initial proportion

of plants that are infected, A describes the rate of

population growth (disease progression rate) and K is

the carrying capacity (the maximum fraction of

infected trees). To allow a local infection rate much

faster than for CVC (Gottwald et al. 1993)

(A = 0.489), we fix A = 3 and retain the initial

infection from Gottwald et al. (1993) as B = 14.069,

leading to 97% infection in a 1 km2 grid cell after

2 years, which is commensurate with initial surveys

(Giuseppe Stancanelli and Maria Saponari pers.

comm.).

Although this equation models the infection

dynamics implicitly, it has been shown that this model

gives a good fit to an explicit infection model and is

therefore underpinned by a mechanistic individual-

based model (Chapman et al. 2015). One may rescale

Eq. 1 to a discrete annual time-scale to coincide with

the vector phenology such that the fraction of infected

hosts at year t and grid cell (x, y) is given by

Ntþ1 x; yð Þ ¼ K x; yð Þ Nt x; yð Þ
K x; yð Þ

� �e�A

¼: f Nt x; yð Þð Þ:

ð2Þ

Although we are predominantly interested in

infections of olive trees, there is evidence to suggest

that a number of less abundant alternative host plants

can become infected with X. fastidiosa (Saponari et al.

2013, 2014a; Martelli et al. 2015; Potere et al. 2015).

While the distribution of olive trees is known, no such

information is available for alternative hosts. Further-

more, the infection pathways and number and identity

of all alternative hosts are not fully understood. To this

end, we define the grid cell infection carrying capacity

as K(x, y) = U(x, y) ? a(1 - U(x, y)), where U(x,
y) is the proportional cover per 1 km2 grid cell of olive

trees and a [ [0, 1] is the carrying capacity in non-

olive grove habitat, relative to that in olive groves. The

proportional olive cover was estimated by counting

the presence-absence of olives in the containing

0.01 km2 sub-cells, corrected for land surface area in

the 1 km2 cell (0.01 km2 presence-absence data

provided by InnovaPuglia SpA).

Dispersal

While the mechanisms of X. fastidiosa dispersal are

known [vectors disperse by flight locally or by wind,

or are transported unintentionally by human vehicle

movement (hitchhiking)], they have not been well

quantified. The disease distribution (see Fig. 1f),

suggests that from the suspected initial outbreak

location near Gallipoli (the concentrated area of

positive X. fastidiosa tests on the west of the penin-

sula) there has likely been a degree of local spread in

conjunction with long-distance dispersal, resulting in a

strong clustering of outbreak locations. This two-

process dispersal is commonly reported and is known

as stratified dispersal (Shigesada et al. 1995), which

we model here.

We represented the short-distance dispersal of the

insect vector with a deterministic 2D exponential

dispersal kernel, with a mean dispersal distance of b
km, for the local spread. In the absence of detailed

dispersal data, the exponential is a good starting

distribution to use in spread models (e.g. Neubert and

Caswell 2000). The kernel is given by

k̂ x; yð Þ ¼ exp � x2 þ y2ð Þ1=2

b

 !
:

Without greater knowledge on the local dispersal

distance of Philaenus spumarius, the main vector of X.

fastidiosa in Apulia (Saponari et al. 2014b), and how

this translates into olive tree infection, we assume that

the mean dispersal distance, b, is 100 m (Blackmer

et al. 2004). It should be noted that a normalizing

constant is not required for infection spread.

From the single snapshot of spread of X. fastidiosa

it is impossible to characterise the nature of the

random long-distance dispersal events (cf. Gilbert

et al. (2004) for example, where human population

density influences dispersal directionality of a human-

transported species). For simplicity, we assume

isotropic stochastic dispersal. We assume that

1828 S. M. White et al.
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dispersal into the sea is not possible since one of the

main mechanisms of dispersal is hitchhiking on

vehicles. We assign a weighted probability for each

1 km2 grid cell generating a random disperser, given

by qNt(x, y), where q [ [[0, 1]. Thus, grid cells that

are heavily infected with X. fastidiosa will have a

greater probability of generating a long-distance

disperser. If the grid cell probability is greater than a

Fig. 1 Typical model

output from a single

simulation of the model with

stochastic long-distance

dispersal. a–e The
progression of the spread of

Xylella fastidiosa

throughout the region over

5 years, starting at a location

close to Gallipoli, Apulia.

Darker red/purple colours

indicate high levels of

infection within a patch. In

f we plot the risk, defined as

the average disease

incidence from 10,000

stochastic model runs after

5 years, and the locations of

positive tests for X.

fastidiosa in olives. Positive

test data was supplied by

InnovaPuglia SpA, where

the positive test was

performed by using PCR

assays and DAS-ELISA

(Saponari et al. 2013)

Modelling the spread and control of Xylella fastidiosa 1829

123



threshold, p (Bernoulli trial), then a random number of

dispersers, M [ {1, 2, …, Mmax}, disperse a random

distance, given by a 2D discrete Gaussian distribution,

N(0, d). Newly infected random grid cells have an

initial infection level of e-B, the initial infection level

as described by the Gompertz equation.

There are three unknown parameters associated

with long-distance dispersal (p, Mmax and d), which

cannot be parameterised from the spread data or

existing literature. We explored a range of values for

these parameters and selected reasonable values so

that the modelled spread patterns resemble qualita-

tively that of the spread data (see ‘‘Results’’ section):

p = 0.2, Mmax = 5 and d = 20 km.

Spatial model

The regional scale spread model can be written as

Ntþ1 x; yð Þ ¼
Xn
i¼1

Xm
j¼1

k x� i; y� jð Þf Nt i; jð Þð Þ; ð3Þ

where k is the sum of the short-distance deterministic

and long-distance stochastic kernels, and f is the

growth function given by Eq. 2. To simulate Eq. 3, we

may make use of convolution theory and the discrete

fast Fourier transform (FFT) for a fast and efficient

method (Allen et al. 2001).

Control strategies

The European Commission audit (European Commis-

sion 2014) on the spread of X. fastidiosa in Italy

proposed control measures to stop the northward

spread of the disease which the European Union (EU)

later approved (European Union 2015). The control

efforts include roguing of infected plants, removing

host plants, insecticide treatments to reduce vectors on

both weed and olive plants, and removal of vector

habitat. These approaches are aimed at preventing

infection introduction and outbreak containment.

Currently, there is no known eradication strategy,

largely due to the broad host range of the pathogen and

its vectors (EFSA PLH Panel (EFSA Panel on Plant

Health) 2015). The affected demarked area (DA) is

divided into four zones: infected zone (IZ), eradication

zone (EZ), buffer zone (BZ) and surveillance zone

(SZ), within which the control measures vary (see

Appendix S2 for further details). Each zone spans the

peninsula from the East to the West coasts. The EFSA

opinion (EFSA PLH Panel (EFSA Panel on Plant

Health) 2015) states that there can be no successful

eradication of X. fastidiosa once it is established and

therefore efforts should be concentrated on preventing

infections in disease-free areas. Therefore, as a

simplification and worst case scenario, we model the

EZ and BZ control strategies, but assume that no

control strategy is employed in the IZ (see Appendix

S2). This approach allows us to concentrate on the

efficacy of preventing northward spread rather than

endemic disease reduction in concordance with the

implemented control strategy (Martelli 2015).

We model the control in these zones by assigning a

probability of infection detection, pdetect [ [[0, 1],

each year to every grid cell within the zone that is

infected, such that if the surveillance efficiency,

s [ [0, 1], is greater than the detection probability

(s[ pdetect) then those infected olive trees within the

grid cell are removed and not replaced. If s = 1 then

all infected olive trees are detected and removed

without replanting; we refer to this as perfect control.

Conversely, if s = 0 then there is no control strategy

and X. fastidiosa may spread unimpeded. Further-

more, we assume that pdetect is independent of the level

of infection since olive growers will inspect each tree

and thus even small outbreaks may be detected. Once

infection has been detected all of the infected hosts are

removed/rogued (Nt(x, y) = 0), and the carrying

capacity is adjusted accordingly. Note that we may

implicitly specify whether infected olive and/or non-

olive hosts may be removed since the ratios of olives to

non-olives are known via the carrying capacity

equation.

Results

Spread model

We start our stochastic simulations to the south of

Gallipoli, the suspected initial outbreak location

(Martelli 2015). Typically, the initial spread is

localised to the Gallipoli area (see Fig. 1a–e), but as

time passes satellite infection sites occur, from which

local spread occurs. This pattern repeats, creating

hotspots of infection that are several km across,

depending on the distribution of olive host plants (see

Fig. S1).
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Since the spread model is stochastic, we use risk

maps (see Fig. 1f) to predict the probability that a

location will become infected. Here we define risk as

the average disease incidence from 10,000 stochastic

model runs after 5 years from the initial outbreak near

Gallipoli. We base the 5 year prediction horizon on

the likely introduction time point to present (Martelli

et al. 2015), although the exact arrival year of the

disease is unknown (Donato Boscia pers. comm.). As

expected, the areas closest to the disease epicentre are

at highest risk with decreasing risk further away, but

the model also predicts the risk is highly heteroge-

neous throughout the landscape due to the patchy

distribution of host olive trees (see Fig. S1) and the

distance from the epicentre. Comparing the risk map

with positive tests for X. fastidiosa suggests that the

model predicts the spread of the disease well quali-

tatively. To evaluate the model predictions quantita-

tively, we used the continuous Boyce index B as

described by Hirzel et al. (2006) (see Appendix S2 for

further details). This gave a value of B = 0.951 (B

varies from -1 to 1; positive values indicate predic-

tions correlate with the data; values close to zero

indicate that the model is not different from a chance

model; negative values indicate that the model does

not correlate with the data), indicating a very strong

correlation between the modelled risk and the

observed disease outbreaks.

Increasing the rate of local infection (A) and the

occurrence of random long-distance dispersal events

(p,Mmax) leads to greater disease incidence and spread

(see Chapman et al. 2015). While this remains true of

the long-distance dispersal parameter (d), the effect on

disease incidence is small. Thus, greater long-distance

dispersal has little impact on the severity of the X.

fastidiosa outbreaks, but will aid in its spread.

Control strategies

After showing that the spread model captures the

qualitative dynamics of X. fastidiosa spread, we use

the model for assessing the potential efficacy of

control strategies. To begin our analysis of the EZ and

BZ we assume that the surveillance intensity is the

same in both zones, such that both have effectively the

same control regime. We refer to this zone as the

control zone (CZ). Furthermore, we assume that

control within this zone is perfect. This is essentially

the best case scenario where cost is no option. We vary

the width of the CZ and plot the effects of the relative

risk (the risk as compared to the risk where no control

is applied) measured from the start of the CZ edge and

extending northwards beyond the current disease

distribution [see Fig. 2a and Appendix S3 Fig. S3

(a)]. Our analysis shows that for narrow CZ widths the

risk is only reduced in the CZ, and beyond that the risk

is largely unchanged from the no control scenario.

This indicates that narrow CZ widths have little effect

on protecting olive trees beyond the CZ and therefore

are unlikely to stop the northward spread of X.

fastidiosa. This is because the random long-distance

dispersal simply jumps over the control zone. In

contrast, for wider control zone widths, the reduction

in risk is observed further away from the control zone

and is therefore more likely to slow the spread of the

disease.

Since the width of the CZ has a large effect on

managing X. fastidiosa risk and that narrow zones fail

to significantly reduce risk significantly, the modelled

dispersal distance is likely to interact with this. In

Fig. 2b we plot variations in the long-distance disper-

sal parameter (d) for a CZ of 25 km, as we previously

established that d is one of the keymechanisms driving

the rate of spread of X. fastidiosa (Chapman et al.

2015). The plot shows that the value of the long-

distance dispersal parameter in relation to the CZ

width is very important in determining whether the

control strategy will reduce risk; small distances

relative to the CZ width may reduce the risk to

negligible levels, while large distances may increase

the relative risk by orders of magnitude, especially for

locations far beyond the CZ [also see Appendix S3

Fig. S3 (b)].

The effort required for detectingX. fastidiosa over a

large region such as the CZ is substantial. Further-

more, given the current state of knowledge on the

disease in olive hosts, there may be a significant lag

between initial infection and disease symptoms being

expressed (EFSA PLH Panel (EFSA Panel on Plant

Health) 2015), which might allow the infection to go

undetected and cause further spread. Here we use our

model to predict the effects of surveillance effort and

detection within the zones. To this end, we vary the

surveillance efficiency parameter, s, as a proxy for

intensity of searching within the CZ. Our results

(Fig. 3 and Appendix S3 Fig. S4) suggest that the

relative risk is equally reduced within the CZ for all

surveillance efficiencies (almost horizontal lines
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within the CZ), but the level of control is reduced as

the efficiency is reduced. This effect is commuted

beyond the CZ, although the relative changes in risk

are narrowed. The qualitative behaviour is replicated

even when there are different detection efficiencies in

the EZ and BZ (see Fig. 3b). Comparing these

figures suggests that having increased surveillance in

a small EZ compared to the surveillance in the BZ has

little effect on preventing the northward spread of X.

fastidiosa.

Fig. 2 Modelling the risk associated with a perfect Control

Zone (CZ). In a the relative risk is plotted for varying CZwidths.

In b the relative risk is plotted for a 25 kmCZwith varying long-

distance dispersal distance parameters. Relative risk is calcu-

lated as riskrel ¼ riskcont�riskuncont
riskuncont

; where riskcont and riskuncont are

the risks at each location for the controlled and uncontrolled

scenarios respectively. In both plots each simulation is started

from the known distribution of positive X. fastidiosa locations

(see Figs. 1, 2) and repeated 10,000 times after which the risk is

calculated. For each location beyond the starting line of the CZ

the perpendicular distance is calculated from the line. All data is

binned into 50 bins and smoothed with a moving mean to reduce

stochasticity so that underlying trends are more apparent. The

median line plot is plotted along with the shaded interquartile

range. In a the relative change in risk within the CZ is -1

Fig. 3 Determining the effects of surveillance effort on risk. In

a we plot the relative risk as we vary the surveillance effort, s,

within a 25 km CZ. In b we plot the relative risk as we vary the

surveillance effort within a 23 km BZ which precedes a 2 km

perfect EZ. The relative changes in risk are calculated by

comparing the controlled and uncontrolled scenarios. All other

parameters and interpretations are as in Fig. 2
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Alternative hosts

Previous sensitivity analysis of the model demon-

strated that the rate of spread of X. fastidiosa may be

highly sensitive to the abundance of alternative hosts

plants (Chapman et al. 2015). To ascertain how

alternative host plants may potentially affect control

effectiveness we consider the mean risk across the

uninfected area of Apulia as the abundance of

alternative hosts varies (Fig. 4). Furthermore, we

compare two control strategies: one where control is

applied to the olive hosts only; and one where all hosts

(olive and non-olive) are controlled. In both cases, as

the abundance of alternative hosts increases then so

does the risk. However, controlling all hosts markedly

improves reduction in risk (up to eightfold), which

becomes more pronounced as the abundance of

alternative hosts increases. This highlights the impor-

tance of alternative host identification, their role in X.

fastidiosa spread and control.

Optimization

Our results suggest that increasing either the width of

the CZ or the surveillance within it will reduce the risk

of the northward spread of X. fastidiosa (Figs. 2, 3).

Given that resources to tackle the spread of the disease

are limited, it is natural to ask whether it is beneficial

to invest in greater CZ widths or surveillance, and how

this depends on the total amount of resource.

To this end, we covary the CZ width with the

surveillance efficiency and calculate the mean risk

across the domain beyond the CZ edge (Fig. 5). We

define the intensity as the product of the CZ width and

surveillance efficiency, and thus serves as a proxy to

the control strategy budget; higher intensity permits

greater combinations of widths and efficiencies, as

depicted by the black contours. Thus we may vary

along the contour combinations of widths and effi-

ciencies to find where the risk is minimised, and thus

providing an optimal control combination for a given

intensity budget.

Modelled simulations predict that the greatest

reduction in risk is achieved with highly efficient

and wide control zones (Fig. 5). However, under

budget constraints, the risk can be minimised by non-

extreme CZ widths or detection efficiencies. Further-

more, changing the budget changes the optimal control

values. Our model predicts that optimal CZ strategies

should concentrate on increasing searching efficiency

Fig. 4 The effects of alternative hosts on the efficacy of control

strategies. In this figure we plot the mean risk (the mean of the

risk as defined in Fig. 2) for varying values of alternative hosts.

We consider two 25 km CZ control strategies: one where only

olive hosts are controlled; and one where olive and alternative

hosts are controlled. Within the CZ it is assumed that the control

strategy is perfect in that infected hosts are immediately

discovered and removed. All other parameters are as in Fig. 2

Fig. 5 Variations in CZ width and surveillance effort on the

mean risk across the spatial domain for a 25 km CZ. We covary

the CZ width and surveillance efficiency, s, for a 25 km CZ and

calculate the mean risk across the spatial domain beyond the CZ

edge, denoted by the colours (blue denotes low risk; yellow

denotes high risk). Black lines indicate contours of equal

intensity (higher intensities appear in the top right corner of the

plot) and black circles indicate their optimal value where the

mean risk is minimised for the given intensity. The minima are

calculated by varying the width and surveillance efficiency

parameters along the contours and calculating the corresponding

mean risk
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for low budgets, but this should change to increasing

CZ widths for larger budgets.

Discussion

The rapid invasion of X. fastidiosa causing OQDS in

Italy is causing substantial damage to olive production

and the local economy, and is extremely worrying for

neighbouring olive-producing regions in Italy and in

other Mediterranean regions (Bosso et al. 2016a, b).

Predicting its spread is important, since this will help

guide control strategies and assess risk, and existing

statistical distribution models (Bosso et al. 2016a, b)

only predict the potential spatial extent of the disease,

not the rate and patterns of spread or impacts of spatial

control approaches. Here, we have developed a simple

model based on previous work (Chapman et al. 2015)

which we have compared to the known spatial and

temporal dynamics of X. fastidiosa and shown that the

model qualitatively reproduces the pattern and speed

of spread of X. fastidiosa in the Apulian region. It

should be noted that the data presented here provides a

single snapshot of the spread of infection to which we

have used a single measure (Boyce index) to validate

the model. Furthermore, there may have been a period

of time where X. fastidiosa spread which went

undetected. Stronger validation would be available

with sequential of infection data from the point of

initial outbreak, but this is not currently available.

Moreover, by the time such data are available, X.

fastidiosa may have spread beyond the current

infected area if left unchecked, causing catastrophic

damage in the process, and may not be stoppable, as

found with other plant pathogens such as sudden oak

death (Cunniffe et al. 2016). Hence, we have provided

the first attempt to model the spread of the disease in

the early stages of invasion in Apulia with the aim of

understanding generic mechanisms of spread and to

elucidate upon control strategies.

The control strategies available to prevent the

northward spread of X. fastidiosa are mostly based on

infected and prophylactic host destruction through

buffer zones and vector control (EFSA PLH Panel

(EFSA Panel on Plant Health) 2015). However, the

effectiveness of such control strategies are likely to

depend on the underlying ecology and extent of the

control method. The European Union decision on

preventing the spread of X. fastidiosa states that the

width of the buffer zone should be calculated in view

of the risk of spread to other areas (European Union

2015). We have shown the width of the zone is

crucially important in reducing the risk of northward

spread of the disease, with buffer zones that are not

sufficiently wide in relation to dispersal distances

(specifically the rare, stochastic long-distance disper-

sal distances) having a relatively negligible effect on

reducing the risk of spread.

In general, modelling approaches are useful tools

for guiding risk assessments and for mitigating against

invasive plant diseases (Chapman et al. 2015; Bosso

et al. 2016a, b). For example, new techniques have

been developed to guide surveillance strategies for

emerging plant diseases (Parnell et al. 2014) or in

predicting their spread (see Chapman et al. (2015) for

a review). These techniques often rely on known

parameter values, such as growth rates (Parnell et al.

2015), to make future predictions. However, there are

significant issues with using these predictive models

for emerging diseases as opposed to re-emerging or

endemic diseases, namely the lack of empirical data to

inform parameter values. In the case of X. fastidiosa,

the outbreak in Apulia is a different strain to previous

outbreaks, infects different hosts and experiences

different environments (EFSA PLH Panel (EFSA

Panel on Plant Health) 2015). Hence, parameters

derived from past outbreaks may not be relevant or

may lead to erroneous predictions. To deal with this

uncertainty, our approach is to use a simple model and

qualitatively validate the predictions against current

spread data, but it is clear that more accurate

predictions would be possible if relevant parameter

values where available. Therefore, we advocate that

field estimates of key parameters, such as infection

growth rates, local and non-local dispersal parameters,

asymptomatic infection lag and host range, be esti-

mated post-haste. This will not only allow better

predictive models, but also inform current and future

control strategies, including surveillance (Parnell et al.

2015). However, our model is of immediate use in

helping understand the spread and inform the control

of X. fastidiosa. As global change accelerates, there is

a need to undertake actions rapidly to counter the

emerging negative impacts, even while data to inform

these decisions may be limited (Shea et al. 2014).

Approaches to addressing this conflict involve itera-

tive decision making and adaptive management,

whereby actions are modified as new information
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becomes available (Polasky et al. 2011), for example

disease management is updated as research provides

more certain model parameters.

While the mechanisms built into the model repre-

sent the key behaviours, more complex mechanisms

may also occur that affect the growth and spread of

OQDS. For example, seasonal or spatial factors may

affect disease incidence, as was shown for CVC

(Laranjeira et al. 2000). Temperature also regulates

the dynamics of X. fastidiosa bacteria in grapevines,

which can limit its potential distribution (Hoddle

2004). However, it is unknown how the bacterium is

affected by temperature in olive hosts. Despite this,

attempts have been made to map the potential

distribution of OQDS in the Mediterranean basin,

estimating high suitability for the disease throughout

the modelled region (Bosso et al. 2016a, b). Also, as

disease causes tree die-back, the levels of infection

may also change. However, it is likely that this will

only affect the infection levels in the infected zone and

will not alter the rate of spread, since spread rates are

usually determined by the infection levels at the front

of the expanding infection (Neubert and Caswell

2000), but this will be dependent on the interaction

between the rate of die-back and the dispersal

mechanisms. Including these complexities is not

justifiable without additional supporting data.

Given the paucity of data, our model has provided

useful insight into the spread of X. fastidiosa and

potential control strategies. Our analysis predicts that

the long-distance dispersal events are an extremely

significant factor in the rapid spread of X. fastidiosa

and therefore targeting control measures at this

mechanism would be highly advantageous. Reducing

vector numbers through insecticide application or

weed control will certainly aid in reducing the

probability of long-term dispersal events, but pre-

venting vectors hitchhiking on vehicles will be more

challenging. However, raising public awareness of the

disease could encourage vehicle checks, akin to the

‘‘Check, Clean, Dry’’ campaign for preventing the

spread of aquatic invasive species in the UK (Non-

native Species Secretariat 2016), may aid in reducing

vector dispersal. Even if these measures are imple-

mented, our model predicts that creating wide buffer

zones may not completely eliminate the risk of spread

of disease beyond the control zone. Nevertheless, the

effectiveness of spread reduction is highly dependent

on the underlying epidemiology and ecology of X.

fastidiosa spread in Apulia, which is not well

quantified (EFSA PLH Panel (EFSA Panel on Plant

Health) 2015). In particular, it is critical to quantify

stochastic long-distance dispersal events, which are

only likely to be achieved by detailed landscape scale

surveillance. Furthermore, since vector hitchhiking

may be a main mechanism of the long-distance

stochastic dispersal, then it stands to reason that is not

isotropic due to the distribution of the road networks,

traffic flows and human population densities in the

region. These factors have been shown to be important

in the spread of other invasive species (Gilbert et al.

2004).

While olive trees have been most significantly

impacted by X. fastidiosa in Italy, other host plants

may also aid the spread of the bacterium, including

oleander (Nerium oleander), almond (Prunus dulcis),

myrtle-leaf milkwort (Polygala myrtifolia) and coastal

rosemary (Westringia fruticosa) (Saponari et al.

2013, 2014a). Since potential vectors of X. fastidiosa

are numerous and widespread (Elbeaino et al. 2014), it

is likely that these alternative host plants may aid in

the spread of the disease, as our results suggest.

Furthermore, our model suggests that if infected

alternative hosts are not controlled then the risk to

uninfected regions may increase up to eightfold,

depending on the abundance of alternative host plants.

Hence, the identification of alternative host plants,

their ability to spread the bacterium and their distri-

bution, is paramount, especially if these hosts are

asymptomatic and go undetected by visual surveys.

This should be achieved by further field trials and

experiments.

Destroying olive trees to control the spread of X.

fastidiosa in Apulia is very costly to the grower

(Abbott 2015; Stokstad 2015). Therefore cost-efficient

control strategies are required. We have shown that

optimal strategies exist that trade-off the balance of

surveillance and extent of the control zones to

minimise the risk of infection in uninfected regions

of Apulia and beyond (Fig. 5), and that these strategies

vary according to the budget available; shifting the

focus of control efforts from searching to control

extent as the budget increases. The logistics of shifting

this effort may of course be problematic, given that the

only method of control currently available are tree

removal and vector control, although new methods,

such as the use of endophytic bacteria (Lacava et al.

2004; POnTE 2015), may change this scenario.
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The control strategies modelled here only occur

with demarcated zones, reflecting current approaches,

but in practice surveillance and control may occur

beyond such a zone, especially if there is long-distance

dispersal. Including these surveillance strategies into

our model may alter the optimal strategy and our

preliminary conclusions. Furthermore, models that

aim to improve surveillance strategies rely upon

accurate spread models to predict the locations of

outbreaks (e.g. Parnell et al. 2015). Using overly

simplistic spread models, or models that do not

capture the mechanisms of spread (e.g. assuming

diffusive dispersal with no long-distance jumps), to

inform surveillance models may result in erroneous

predictions that are counterproductive. However,

developing complex models may require significant

development and validation time, thus negating their

usefulness in combatting emerging infectious dis-

eases. Hence, the method we have undertaken, in

developing a simple mechanistic model that can be

qualitatively validated against preliminary spatial

data, may prove useful in breaking the circular

problem, despite the paucity of empirically deter-

mined parameters.

Our novel modelling strategy has highlighted the

importance of several key of parameters and processes

of the X. fastidiosa outbreak that are either unknown or

not quantified. Much of the current research on the X.

fastidiosa outbreak in Apulia is focusing on the

disease transmission, genetics, monitoring, surveil-

lance, and control methods (POnTE 2015). However,

our model and sensitivity analyses highlight that

research should also be focused on quantifying local

and long-distance dispersal. This will allow better

predictions of future spread and also guidance on the

extent and effectiveness of control methods.
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