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Despite extensive work carried out on leatherback turtles (Dermochelys coriacea) in the North Atlantic and

Indo-Pacific, very little is known of the at-sea distribution of this species in the South Atlantic, where the

world’s largest population nests in Gabon (central Africa). This paucity of data is of marked concern given

the pace of industrialization in fisheries with demonstrable marine turtle bycatch in African/Latin

American waters. We tracked the movements of 25 adult female leatherback turtles obtaining a range

of fundamental and applied insights, including indications for methodological advancement. Individuals

could be assigned to one of three dispersal strategies, moving to (i) habitats of the equatorial Atlantic, (ii)

temperate habitats off South America or (iii) temperate habitats off southern Africa. While occupying

regions with high surface chlorophyll concentrations, these strategies exposed turtles to some of the

world’s highest levels of longline fishing effort, in addition to areas with coastal gillnet fisheries.

Satellite tracking highlighted that at least 11 nations should be involved in the conservation of this species

in addition to those with distant fishing fleets. The majority of tracking days were, however, spent in the

high seas, where effective implementation of conservation efforts is complex to achieve.

Keywords: satellite tracking; fisheries bycatch; marine vertebrate; South Atlantic; foraging; conservation
1. INTRODUCTION
Long-lived marine vertebrates face risks throughout their

range, and their life-history characteristics place them at

risk of repeated and sometimes deleterious interactions

with anthropogenic threats [1]. Management of human

activities that pose risk to these species is complex, as

multiple nations are involved and species can spend

extended periods of time in the high seas. In these

regions, only a limited range of specialized legal conven-

tions exist to manage the human activities of abiding

parties [2]. To quantify the level of threat posed by

human activities, it is necessary first to gain an
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understanding of species movements in tandem with a

coherent description of the nature and spatial footprint

of potential risks (e.g. [3]).

Satellite telemetry offers a useful approach for tracking

the movement of migratory species and has been used on

all major taxonomic groups of marine vertebrates (e.g.

pinnipeds [4], seabirds [5], cetaceans [6] and large pela-

gic fishes [7]). For leatherback turtles (Dermochelys

coriacea), satellite tracking has provided important

insights into their horizontal and vertical movements in

the North Atlantic [8–11] and Indo-Pacific [12–15]

(electronic supplementary material, table S1). Leather-

back turtles are generally epipelagic reptiles (i.e.

occurring in waters less than 200 m depth) [10]. They

are the most widely distributed of all marine turtle species

and appear to be bounded by the 10–128C isotherms

at mid-latitudes [16,17], although they can tolerate
This journal is q 2011 The Royal Society
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near-freezing waters for short periods of time during

diving [18]. Adults return to breed and nest in the

region of their natal tropical beaches on variable repro-

ductive schedules [19], which are governed by food

availability during years of non-breeding away from

reproductive grounds [20].

Population trajectories observed at leatherback turtle

rookeries are somewhat varied. In the Pacific, numbers

have undergone precipitous decline [21] with no sign of

rebound. The North Atlantic populations have seen

varied trajectories, with some decreasing [22] while

others are stable or are increasing [23–25]. Only recently,

however, has the magnitude of the South Atlantic popu-

lation—the world’s largest—been fully described [26];

with as many as 40 000 females nesting in an area centred

upon Gabon, the trajectory of this population neverthe-

less remains uncertain. Leatherback turtle movements

in South Atlantic coastal habitats during the breeding

season have been reported [27,28]. With the exception

of a few flipper tag returns from South America [29]

and the satellite tracking of four individuals from the

Rio de la Plata Estuary (Uruguay, South America) [30]

demonstrating seasonal movements along the South

American coastline, there is no comprehensive knowledge

of their at-sea distribution.

The precipitous decline in the Indo-Pacific leatherback

turtle is thought to have been driven, at least in part, by

fisheries interactions [21]. Given the increasing industri-

alization of fisheries in Africa [31], and demonstrable

bycatch in longline [3,32] and gillnet fisheries [33], we

set out to describe the at-sea distribution of leatherback

turtles from this major rookery. In particular, we describe:

(i) post-nesting dispersal patterns, including migratory

routes; (ii) general patterns of movement in the South

Atlantic, in contrast to those in the North Atlantic, to

explore whether there is opportunity for stock-mixing

across the Equator; and (iii) habitat-use contextualized

with oceanographic data and known data on intensity of

putative threats.
2. MATERIAL AND METHODS
(a) Field sites and attachment methods

Platform transmitter terminals (PTTs; n¼ 25) were attached

to female leatherback turtles nesting in Gabon over four nesting

seasons (2006: n ¼ 8; 2008: n¼ 5; 2009: n¼ 10; and 2010:

n¼ 2). Turtles were encountered while undertaking night-

time patrols at Pongara (n ¼ 11) and Mayumba (n¼ 14)

National Parks, two of Gabon’s most dense nesting regions

[26]. Morphometric data (e.g. curved carapace length (cm))

were collected from each female leatherback turtle fitted with

a PTT. In 2006, Kiwisat 101 PTTs (n¼ 3; mass 440 g; 2 �
lithium C cells; Sirtrack, New Zealand) and Satellite Relay

Data Loggers (n¼ 5; mass 400 g; 1� lithium D cell; Sea

Mammal Research Unit, UK) were deployed using a harness

system fitted during the nesting process, analogous to the

approach of Eckert & Eckert [34]. In 2008, Kiwisat 202 PTTs

(n¼ 5; mass 150 g; 3 � lithium AA cells; Sirtrack) were

deployed using a ‘through-the-keel’ approach, where PTTs

were directly attached to the carapace, analogous to the

method of Fossette et al. [35]. In 2009 and 2010, MK10-A

(n¼ 8; mass 200 g; 4� lithium AA cells) and MK10-AF

PTTs (n¼ 4; mass 250 g; 4 � lithium AA cells; Wildlife Com-

puters, Washington, USA) were deployed using the same
Proc. R. Soc. B
‘through-the-keel’direct attachment method. These attachment

methods represented state-of-the-art technology for the seasons

inwhich theywere usedand all effortswere made to ensure PTTs

and the associated attachments minimized impacts upon study

animals. All PTTs were fitted with salt-water switches to sup-

press transmissions while individuals were submerged. PTTs

were not duty-cycled, with the exception of Kiwisat 202 PTTs,

which switched off for 6 h daily between 00.00 and 06.00

Coordinated Universal Time (UTC).

(b) Preparing Argos location and PTT data

Argos data were automatically downloaded from CLS Argos

[36] using the Satellite Tracking and Analysis Tool [37]. To

reconstruct the movements of leatherback turtles, we used

Argos locations assigned the standard location classes (LC)

of 3, 2, 1 and 0, and auxiliary LC of A and B. These classes

represent the estimated spatial accuracy of each location.

Locations assigned LC 3 are of greatest accuracy

(� 350 m) and locations assigned LC A or B have no esti-

mate of accuracy. Locations classified as invalid (LC Z)

were discarded as they did not pass at least two of Argos’s

plausibility tests (i.e. minimum residual error, transmission

frequency continuity, minimum displacement and plausi-

bility of velocity between locations [36]). The time series of

locations for each leatherback turtle were subject to speed

and azimuth filtering (10 km h21 and 408, respectively)

[38]. Location data were then resolved to single best daily

locations, representing the location with the greatest spatial

accuracy (highest LC) received in each 24 h period (00.00–

23.59 UTC). When more than one location of equal accuracy

was received in any 24 h period, we selected the first. For days

when no locations were received, we interpolated locations

using cubic (curvilinear) interpolation [39], but only for

periods of up to 7 days following receipt of a valid Argos

location. From these location data, a spatial density map

was constructed to estimate potential areas of high occupancy.

This process used a hexagonal polygon binning process (poly-

gon areas approx. 50 000 km2) summing spatially coincident

leatherback turtle locations to each polygon.

For each leatherback turtle location, we determined: (i)

spatially coincident geopolitical zone; (ii) spatially and tem-

porally coincident chlorophyll a concentration (mg m23) and

night-time sea surface temperature (8C) from the satellite-

derived MODIS Aqua monthly chlorophyll a and sea surface

temperature products (4 km resolution); (iii) longline fisheries

effort as occurring in 2000 [3]; and (iv) human impact score

[40] representing an integration of anthropogenic drivers of

ecosystem change, which includes commercial fisheries catch

data for the period 1993–2003. Cumulative impact scores

(Ic) are divided into six categories of impact ranging from

very low (,1.4) to very high impact (.15.52).

PTTs in 2009 and 2010 (models MK10-A and MK10-AF)

also provided summary dive data at 4 h intervals (starting 00.00

UTC) on the proportion of time spent within pre-specified

depth ranges.

(c) Dispersal behaviour and transit speeds

Reconstructed horizontal movements were visually assessed

to determine commonalities in post-nesting dispersal behav-

iour. The movements of each individual were assigned to one

of the three apparent groups: (i) dispersal into habitats of

the equatorial Atlantic, south of the Equator and north of

the Tropic of Capricorn (23.48S); (ii) dispersal to temperate

habitats off South America; and (iii) dispersal to temperate

http://rspb.royalsocietypublishing.org/
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habitats off southern Africa to a region south of the Tropic of

Capricorn and east of the Prime Meridian (08E).

Time series of movement speed (derived ground-speed,

km h21) and minimum straight-line displacement from the

first post-nesting location to all subsequent locations were

calculated for each leatherback turtle. Patterns in movement

speed were subsequently examined with respect to dispersal

groups and PTT attachment methods (i.e. harness or direct

attachment) using linear mixed-effects models with maxi-

mum-likelihood error estimation in GENSTAT (v. 12, VSN

International, UK). Mean movement speed (km h21) was

calculated over 10-day periods to minimize both potential

diurnal effects on speed of movement and variable accuracy

estimates from Argos. Mean movement speed was sub-

sequently used as the response variate in the statistical

model. Three fixed-effects were used in the model: (i) time

since deployment, as turtles generally reduced transit speed

as tracking duration increased; (ii) dispersal group; and (iii)

PTT attachment method. An identification number for

each tracked turtle was included as a random factor, which

allowed for repeated observations and variable data volumes

for each individual [41]. Only data gathered within the first

150 days of satellite tracking (approx. mean tracking

duration) were used from each individual.
3. RESULTS
(a) Tracking summary

Female leatherback turtles (n ¼ 25; curved carapace length

151+6 cm, mean+1 s.d., range 141–163 cm) were

satellite-tracked for 154+104 days (mean+1 s.d., range

39–504 days) while undertaking post-nesting dispersal

from the coast of Gabon (figure 1 and electronic supplemen-

tary material, table S2). Of these individuals, 17 were

satellite-tracked for more than 100 days and one for more

than 365 days. PTTs (mass 267+109 g, mean+1 s.d.,

range 150–440 g) represented 0.1+0.4% (mean+1 s.d.,

range 0.4–1.7%) of leatherback turtle body mass. Body

mass was estimated using y (mass kg) ¼ 2468.84 þ
(5.2076�CCL (cm)) from [42].

The horizontal movements of leatherback turtles

(figure 2) allowed individuals to be assigned to one of

the three dispersal groups: (i) dispersal to habitats of

the equatorial Atlantic (n ¼ 15; mean minimum displace-

ment distance 2190+685 km, mean+1 s.d., range

1079–3277 km); (ii) dispersal to temperate habitats off

South America, including Brazil, Uruguay and Argentina

(n ¼ 5; mean minimum displacement distance 5378+
1970 km, mean+1 s.d., range 2527–7563 km); and

(iii) dispersal to temperate habitats off southern Africa

(n ¼ 2; mean minimum displacement 4248+679 km,

mean+1 s.d., range 3768–4728 km). Two individuals

could not be assigned to a dispersal group. No satellite-

tracked individual moved further north of the Equator

than 0.78N. The median curved carapace lengths of

the three dispersal groups did not differ significantly

(Kruskal–Wallis, x2
0:05;2 0.27, p ¼ 0.87).

(b) Geopolitical zones and at-sea density

Female leatherback turtles ranged widely while undertak-

ing their post-nesting movements over the four seasons of

satellite tracking (figure 1). Turtles occupied waters of 11

countries bordering the South Atlantic, as follows.

African waters: Angola 0.9 per cent of all locations,
Proc. R. Soc. B
Equatorial Guinea 3.0 per cent, Gabon 4.7 per cent,

Namibia 2.4 per cent, Republic of the Congo 0.7 per

cent, Sao Tome and Principe 1.0 per cent, and South

Africa 2 per cent. South American waters: Brazil 3.8

per cent, Argentina 0.4 per cent and Uruguay 0.8 per

cent. Two per cent of locations occurred in the waters

of the UK Overseas Territories of Ascension Island and

St Helena. Notably, 78 per cent of all leatherback turtle

locations were received from the high seas. Leatherback

turtles dispersing into the equatorial Atlantic spent the

greatest proportion of time in the high seas (group I;

83.6%) when compared with those destined for temper-

ate habitats off South America (group II; 67.4%) and

temperate habitats off South Africa (group III; 77.1%).

Density mapping of leatherback turtle movements

(figure 3a) highlights the potential importance of the

equatorial Atlantic for this species, particularly for indi-

viduals assigned to group I, the dominant dispersal

group in this study. Density mapping (figure 3a) further

highlights a putative migratory corridor reaching from

Gabon following a south-westerly direction into the high

seas from both Pongara and Mayumba National Parks.

The circular mean (+1 s.d.) heading between the first

post-nesting location (first Argos location occuring at

sea after the final nesting event) and the location at 10

days following departure for each individual (mean time

to cross 200 nm EEZ limit of Gabon) was 235+158
(n ¼ 25; range 210–2718).
(c) Ocean sea surface temperature and surface

chlorophyll

In continental shelf habitats, female leatherback turtles

moved close to the regions where they are thought to be

thermally limited (figure 3b) [16,17], extending as far

as 39.58 S in temperate habitats off South America

(group II) and 40.68 S in temperate habitats off southern

Africa (group III).

Movements of female leatherback turtles dispersing

into the equatorial Atlantic (group I) were generally

restricted to regions of elevated surface chlorophyll

(figure 3b). Median concentration of satellite-derived sur-

face chlorophyll a for the locations of leatherback turtles

was 0.15 mg m23 (grand median, n ¼ 15; range of

medians 0.1–0.6 mg m23). Median sea surface tempera-

ture for this group was 26.38C (grand median, n ¼ 15;

range of medians 21.2–28.68C).

Female leatherback turtles dispersing to temperate

continental shelf habitats off South America (group II)

undertook migratory movements traversing the South

Atlantic. Median concentration of satellite-derived surface

chlorophyll a was 0.08 mg m23 (grand median, n ¼ 6;

range of medians 0.05–0.12 mg m23). Median sea surface

temperature for this group was 26.58C (grand median,

n ¼ 6; range of medians 22.3–27.68C). For two individuals

assigned to this group (II) that arrived in continental shelf

habitats off South America, and whose movements in

these habitats were suggestive of foraging (i.e. increased

path tortuosity relative to the comparatively straight

trans-oceanic migration), the individual median satellite-

derived surface chlorophyll a concentrations were 0.4

and 0.3 mg m23, respectively, and median sea surface

temperatures were 18.38C and 17.38C, respectively.

http://rspb.royalsocietypublishing.org/
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Leatherback turtles dispersing into temperate habitats

off southern Africa (group III; n ¼ 2), whose movements

were also suggestive of foraging behaviour, moved into

waters of the Benguela and Agulhas Currents, where

median satellite-derived surface chlorophyll a concen-

trations for these individuals were 0.17 and 0.16 mg m23,

respectively; median sea surface temperatures were 21.28C
and 18.58C, respectively.
(d) Threats

When considering patterns of horizontal movement with

respect to putative threats, female leatherback turtles dis-

persing into the equatorial Atlantic (group I) occupied

waters that in 2000 [3] received some of the world’s

highest longline fisheries effort (figure 3c). Surveys to

quantify leatherback turtle longline interactions in this

area have demonstrated that they occur and that some

of these are fatal (figure 3c [32]; catch per unit effort

(CPUE): 0.3–0.7 leatherbacks per 1000 hooks set with

gear set at 40–60 m depth). Median human impact

score [40] sampled at leatherback turtle locations

(group I) was 7.5 (grand median, n ¼ 15; range of

medians 4.6–8.7). For the ocean basin (58 N–438 S,

558 W–258 E), the median human impact score was 7.8
Proc. R. Soc. B
(IQR 4.8–9.1), corresponding to impacts ranging from

low to medium-high as described by Halpern et al. [40].

Leatherback turtles dispersing to temperate habitats off

South America (group II) moved through equatorial regions

of longline fisheries, where effort was greatest (in 2000) in

the South Atlantic (figure 3c). Human impact scores

(medians) sampled at the locations of two turtles while

within temperate continental shelf habitats adjacent to

Brazil, Uruguay and Argentina were 10.4 and 9.1, respect-

ively (figure 3d). Leatherback turtle interactions with

fisheries have been reported within these habitats (longline

CPUE: 0.59 leatherbacks per 1000 hooks set [43], 0.22

marine turtles per 1000 hooks set [33]; gillnet CPUE:

0.13 marine turtles per gillnet set [33]).

Individuals arriving in temperate habitats off southern

Africa (group III) moved into regions where longline fish-

eries effort is somewhat lower than in equatorial regions

(figure 3c). Median human impacts scores determined at

locations of the two turtles in this region were 7.5 and 8.6

(figure 3d).
(e) Depth utilization

Summary and individual dive metrics collected by PTTs

deployed during 2009 and 2010 indicated that

http://rspb.royalsocietypublishing.org/
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leatherback turtles predominantly occupied the epipelagic

zone between the surface and 200 m depth (figure 4).

Exceptionally deep dives were, however, recorded with

an absolute maximum dive depth of 1080 m and mean

maximum dive depth of 590+314 m (mean+1 s.d.,

n¼ 8; range 272–1080 m).

(f) Transit speeds and attachment methods

There were significant effects of increasing migration

duration (linear mixed model, Wald ¼ 35.7, d.f. ¼ 1,

x2 p ¼ ,0.001) and attachment method (linear mixed

model, Wald ¼ 9.0, d.f. ¼ 1, x2 p ¼ 0.003) on movement

speed. Yet there was no apparent effect of post-nesting dis-

persal strategy on movement speed (linear mixed model,

Wald ¼ 2.3, d.f. ¼ 2.3, x2 p ¼ 0.3). Predicted mean move-

ment speed taken from the statistical model was 1.6+
0.3 km h21 (mean+1 s.d.) for individuals fitted with

PTTs using direct attachment, whereas for leatherback tur-

tles with PTTs fitted using a harness it was 1.3+0.5 km h21

(mean+1 s.d.)—18.8 per cent slower than those turtles

fitted with PTTs using a direct attachment method.
4. DISCUSSION
As shown in conspecifics satellite-tracked in other parts of

the world [8–10,12,15,44], leatherback turtles in the

South Atlantic are wide-ranging, with movement encom-

passing much of the South Atlantic basin within thermal

tolerance limits [16,17]. Density mapping of leatherback

turtle movements, considered in unison with surface

chlorophyll a, highlights the potential importance of habi-

tats within the South Equatorial system for this species.

Individuals assigned to group I remained north of the

South Atlantic gyre, the core of which is characterized

by exceptionally low surface chlorophyll a concentrations,

when compared with the ocean basin. Surface chlorophyll

a within the dynamic equatorial habitats is predominantly

governed by upwelling of nutrients (see [45]). Individuals

dispersing to temperate habitats off South America

(group II) appear to transit through the equatorial area
Proc. R. Soc. B
of increased surface chlorophyll a and also the South Atlan-

tic gyre, to more productive habitats where productivity is

governed by wind-driven mixing and the characteristic

eutrophic nature of continental shelves [45]. For individuals

dispersing to temperature habitats off southern Africa

(group III), regional ocean current systems including the

Benguela system appear important. This region is highly

productive, particularly for gelatinous organisms [46],

which are thought to comprise the majority of the leather-

back turtle diet. One individual within this group also

interacted with the Agulhas retroflection, a physical feature

of the western boundary current of the South Indian Ocean,

which is similarly used by foraging leatherback turtles from

the Indo-Pacific population (see [13] for review).

Although leatherback turtle movements in the South

Atlantic are on vast spatial scales, data on spatially explicit

threats [3] and indices of general marine degradation [40]

are becoming progressively more available, allowing an

integrative approach to contextualize threats even for

such a widely distributed species. The movement patterns

described here highlight that a substantial proportion of

the satellite-tracked turtles occupy regions which, in the

year 2000, received some of the highest levels of longline

fishing effort in the world. Unfortunately, we lack detailed

knowledge on inter- and intra-annual variation in fisheries

effort from both neritic and oceanic habitats, which

would greatly facilitate a more holistic assessment of puta-

tive risk. Given the highly dynamic (oceanographic) and

productive (biological) nature of habitats visited by the

satellite-tracked leatherback turtles, it seems plausible

that these areas represent important fisheries habitats,

and therefore putative risks to long-lived vertebrates,

over extended periods (years).

When movements of leatherback turtles are contextua-

lized using spatial data on human impacts [40], we see a

mixed picture with leatherback turtles moving through a

wide spectrum of at-sea degradation, with a high degree of

disturbance in much of the South Atlantic, albeit with

lower levels of disturbance in mid-latitude waters. Fisheries

data integrated by Halpern et al. [40] are derived from catch

statistics and as such do not reflect fisheries effort [47], and

may therefore not fully depict the spatial impact of fisheries.

Pelagic longline fisheries may not, however, pose the greatest

risk to leatherback turtles [48], particularly when considered

in light of other fisheries techniques, including coastal

gillnets [33,49], which may impact adults during breeding,

migratory and foraging phases of movements. Fisheries

pressure in coastal waters off South America (Atlantic), for

example, could profoundly select for an offshore dispersal

phenotype, as has been suggested for the Pacific population

(see [50]). As described in this study, depth utilization data

collected by PTTs indicate that female leatherback turtles

are epipelagic in nature, as observed for conspecifics in the

North Atlantic [10,51]. This behaviour places individuals

at the operating depths of pelagic longline fisheries [32]

and coastal gillnets [49].

Although the population from which individuals were

satellite-tracked nests largely in one country, our tracking

has shown that at least 10 other nations are involved in the

future of leatherback turtles dispersing from Gabon. In

recent decades, rising levels of fishing effort by European

Union, eastern European and Asian fleets have become

prevalent [31], further widening the range of countries

needed to be involved in the conservation of this

http://rspb.royalsocietypublishing.org/
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migratory species. Much of the fisheries activity described

takes place on the High Seas, which makes deleterious

interactions immensely difficult to manage.

To date, no leatherback turtle followed by satellite track-

ing has made any significant excursion across the Equator

(Atlantic Ocean) in either direction, including 25 individ-

uals tagged in this study, four individuals tagged by

Lopez-Mendilaharsu et al. [30] in the southwest Atlantic

and more than 100 animals from the North Atlantic (elec-

tronic supplementary material, table S1), suggesting that

there may be a profound sub-structuring within the

Atlantic. Leatherback turtles occupying the North and

South Atlantic basins may be effectively reproductively iso-

lated from one another. Such a division could be elucidated

using forensic techniques [52]. This apparent pattern could,

however, be an artefact of the short duration of post-nesting

tracking (typically five to six months in this study) in com-

parison to the length of the multi-annual interbreeding

interval. There are, however, areas in the South Atlantic

where, as in the North Atlantic, different reproductive

populations are likely to be mixing in shared foraging

grounds. In continental shelf waters off South America, tur-

tles from Gabon are likely to be sharing foraging areas with

leatherback turtles originating from Brazilian rookeries

[53], although these rookeries are significantly smaller.

Perhaps more remarkable is the latitudinal extent of the

range, with individuals nesting on the Equator in Gabon

and subsequently dispersing into the productive waters of

the Benguela upwelling along the Atlantic coast of South

Africa and Namibia. There, two of our study animals used

foraging grounds previously described for leatherback

turtles dispersing from the Indian Ocean nesting areas of

South Africa [13]. Data needed to complete a pan-Atlantic

overview of patterns of movements should be sought from

the nesting populations in Brazil [53] and Bioko (Equatorial

Guinea) [54].

From the perspective of informing further satellite

tracking work and to further refine our knowledge of

leatherback turtle movements and the threats they face,

there are two key lessons that should be highlighted.

Firstly, wide-ranging dispersal results in marked intra-

population variability in environmental conditions

experienced in foraging areas, and hence variability in

nutritional intake, which probably leads to variability in

the magnitude of breeding in any given year [45,55].

The inter-annual variability in post-nesting migration we

described underscores this phenomenon and shows that,

in addition to increasing sample size of animals satellite-

tracked to try and capture the major dispersal patterns,

consideration should be given to tracking individuals

from multiple breeding cohorts. Secondly, the animal sat-

ellite tracking community must continually appraise its

methodologies to ensure that impacts on study animals

are minimized for both ethical reasons and to ensure

maximum robustness of the data gathered. A large

number of leatherback turtles (Atlantic Ocean, n. 100;

Indo-Pacific Ocean, n . 100; electronic supplementary

material, table S1) have been satellite-tracked using har-

nesses and some authors have already suggested that, in

addition to potential physical problems of abrasion [56],

this method of attachment may impair speed of move-

ment and diving behaviour [35]. To minimize the

possible risk, we moved to direct attachment of smaller

and lighter satellite transmitters in later study years.
Proc. R. Soc. B
This has allowed us to compare the speed of movement

(derived ground-speed) of two methods while controlling

for dispersal strategy. It is clear from our data that the

impact of harnesses is discernible and it appears that it

would be better to proceed with the direct attachment

methods.

A recent priority-setting exercise for marine turtle con-

servation highlighted the need to ascertain key foraging

areas [57]. In this paper, we have for the first time elabo-

rated the general patterns of post-nesting dispersal for one

of the world’s major nesting areas for leatherback turtles,

highlighting behavioural similarities with conspecifics

elsewhere, such as putative migration corridor (Pacific

Ocean [58]) and dispersal to coastal mid-latitude habitats

(North Atlantic [10]). In addition, we take the novel step

of integrating movements of a free-ranging marine mega-

vertebrate species with global-scale data layers of

potential threat to contextualize movements with fishing

effort and modelled cumulative human impacts. It is

clear that this is an area that can be built upon in the

future as the magnitude and availability of information

(e.g. from vessel-monitoring systems [59] and other

metrics describing fishing [33]) increases.
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