545 research outputs found

    Boundary Integral Method for Stationary States of Two-Dimensional Quantum Systems

    Get PDF
    The boundary integral method for calculating the stationary states of a quantum particle in nano-devices and quantum billiards is presented in detail at an elementary level. According to the method, wave functions inside the domain of the device or billiard are expressed in terms of line integrals of the wave function and its normal derivative along the domain's boundary; the respective energy eigenvalues are obtained as the roots of Fredholm determinants. Numerical implementations of the method are described and applied to determine the energy level statistics of billiards with circular and stadium shapes and demonstrate the quantum mechanical characteristics of chaotic motion. The treatment of other examples as well as the advantages and limitations of the boundary integral method are discussed.Comment: RevTeX3.0, 24 pages, 9 EPS figures (included); To be published in Int. J. of Mod. Phys.

    Test and evaluate passive orbital disconnect struts (PODS 3)

    Get PDF
    The objectives of the Passive Orbital Disconnect Struts (PODS) test are to evaluate modal resonance of the PODS-III supports to obtain engineering data required for use of PODS-III on flight systems; determine possible performance improvements in large LO2/LH2 space applications. (1) Modal Vibration Tests. A modal resonance survey is performed on a set of six PODS-III struts assembled in a dewar simulator. The survey conditions simulate both launch and orbital loadings of the struts. The orbital load range spans a full to an empty tank. The frequencies surveyed cover the range consistent with Shuttle qualification requirements and the principal resonant modes of the strut system. (2) Benefit study. The benefit of using PODS-III supports on OTV and Space Station LO sub 2 and LH sub 2 reference tanks was compared to nondisconnect supports. Four LO sub 2 and LH sub 2 tanks were studied under various conditions: (1) holding the launch resonance at 35 Hz and varying the orbit resonance; (2) analyzing both full and emtpy tanks at launch; (3) varying orbit boundary temperaure; (4) varying the number of struts; (5) varying orbit times; and (6) using or not using vapor cooling

    Immunohistochemical Demonstration of IgG in Reed-Sternberg and Other Cells in Hodgkin\u27s Disease

    Get PDF
    Increased synthesis of IgG in vitro has been demonstrated in spleens from patients with Hodgkin\u27s disease, either with or without invasion of the organ by tumor (1). Interest in this laboratory has centered recently on cytochemical localization of immunoglobulins by means of an immunoglobulin-peroxidase bridge procedure (2) and a satisfactory method has been developed for selectively visualizing immunocytes with this technique. 1 As a means of assessing the basis for increased IgG biosynthesis in spleens of Hodgkin patients, this immunostaining procedure has been applied to localization of IgG-producing cells in specimens with Hodgkin\u27s disease

    The speed and acceleration of the ball carrier and tackler into contact during front-on tackles in rugby league.

    Get PDF
    The aim was to use a combination of video analysis and microtechnology (10 Hz global positioning system [GPS]) to quantify and compare the speed and acceleration of ball-carriers and tacklers during the pre-contact phase (contact - 0.5s) of the tackle event during rugby league match-play. Data were collected from 44 professional male rugby league players from two Super League clubs across two competitive matches. Tackle events were coded and subject to three stages of inclusion criteria to identify front-on tackles. 10 Hz GPS data was synchronised with video to extract the speed and acceleration of the ball-carrier and tackler into each front-on tackle (n = 214). Linear mixed effects models (effect size [ES], confidence intervals, p-values) compared differences. Overall, ball-carriers (4.73 ± 1.12 m∙s-1) had greater speed into front-on tackles than tacklers (2.82 ± 1.07 m∙s-1; ES = 1.69). Ball-carriers accelerated (0.67 ± 1.01 m∙s-2) into contact whilst tacklers decelerated (-1.26 ± 1.36 m∙s-2; ES = 1.74). Positional comparisons showed speed was greater during back vs. back (ES = 0.66) and back vs. forward (ES = 0.40) than forward vs. forward tackle events. Findings can be used to inform strategies to improve performance and player welfare

    Depletion of somatic mutations in splicing-associated sequences in cancer genomes

    Get PDF
    Abstract Background An important goal of cancer genomics is to identify systematically cancer-causing mutations. A common approach is to identify sites with high ratios of non-synonymous to synonymous mutations; however, if synonymous mutations are under purifying selection, this methodology leads to identification of false-positive mutations. Here, using synonymous somatic mutations (SSMs) identified in over 4000 tumours across 15 different cancer types, we sought to test this assumption by focusing on coding regions required for splicing. Results Exon flanks, which are enriched for sequences required for splicing fidelity, have ~ 17% lower SSM density compared to exonic cores, even after excluding canonical splice sites. While it is impossible to eliminate a mutation bias of unknown cause, multiple lines of evidence support a purifying selection model above a mutational bias explanation. The flank/core difference is not explained by skewed nucleotide content, replication timing, nucleosome occupancy or deficiency in mismatch repair. The depletion is not seen in tumour suppressors, consistent with their role in positive tumour selection, but is otherwise observed in cancer-associated and non-cancer genes, both essential and non-essential. Consistent with a role in splicing modulation, exonic splice enhancers have a lower SSM density before and after controlling for nucleotide composition; moreover, flanks at the 5’ end of the exons have significantly lower SSM density than at the 3’ end. Conclusions These results suggest that the observable mutational spectrum of cancer genomes is not simply a product of various mutational processes and positive selection, but might also be shaped by negative selection

    A novel infrared video surveillance system using deep learning based techniques

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this record.This paper presents a new, practical infrared video based surveillance system, consisting of a resolution-enhanced, automatic target detection/recognition (ATD/R) system that is widely applicable in civilian and military applications. To deal with the issue of small numbers of pixel on target in the developed ATD/R system, as are encountered in long range imagery, a super-resolution method is employed to increase target signature resolution and optimise the baseline quality of inputs for object recognition. To tackle the challenge of detecting extremely low-resolution targets, we train a sophisticated and powerful convolutional neural network (CNN) based faster-RCNN using long wave infrared imagery datasets that were prepared and marked in-house. The system was tested under different weather conditions, using two datasets featuring target types comprising pedestrians and 6 different types of ground vehicles. The developed ATD/R system can detect extremely low-resolution targets with superior performance by effectively addressing the low small number of pixels on target, encountered in long range applications. A comparison with traditional methods confirms this superiority both qualitatively and quantitativelyThis work was funded by Thales UK, the Centre of Excellence for Sensor and Imaging System (CENSIS), and the Scottish Funding Council under the project “AALART. Thales-Challenge Low-pixel Automatic Target Detection and Recognition (ATD/ATR)”, ref. CAF-0036. Thanks are also given to the Digital Health and Care Institute (DHI, project Smartcough-MacMasters), which partially supported Mr. Monge-Alvarez’s contribution, and to the Royal Society of Edinburgh and National Science Foundation of China for the funding associated to the project “Flood Detection and Monitoring using Hyperspectral Remote Sensing from Unmanned Aerial Vehicles”, which partially covered Dr. Casaseca-de-la-Higuera’s, Dr. Luo’s, and Prof. Wang’s contribution. Dr. Casaseca-de-la-Higuera would also like to acknowledge the Royal Society of Edinburgh for the funding associated to project “HIVE”

    Prevalence and subtypes of Influenza A Viruses in Wild Waterfowl in Norway 2006-2007

    Get PDF
    The prevalence of influenza A virus infection, and the distribution of different subtypes of the virus, were studied in 1529 ducks and 1213 gulls shot during ordinary hunting from August to December in two consecutive years, 2006 and 2007, in Norway. The study was based on molecular screening of cloacal and tracheal swabs, using a pan-influenza A RT-PCR. Samples found to be positive for influenza A virus were screened for the H5 subtype, using a H5 specific RT-PCR, and, if negative, further subtyped by a RT-PCR for the 3'-part of the hemagglutinin (HA) gene, encompassing almost the entire HA2, and the full-length of the neuraminidase (NA) gene, followed by sequencing and characterization. The highest prevalence (12.8%) of infection was found in dabbling ducks (Eurasian Wigeon, Common Teal and Mallard). Diving ducks (Common Goldeneye, Common Merganser, Red-breasted Merganser, Common Scoter, Common Eider and Tufted Duck) showed a lower prevalence (4.1%). In gulls (Common Gull, Herring Gull, Black-headed Gull, Lesser Black-headed Gull, Great Black-backed Gull and Kittiwake) the prevalence of influenza A virus was 6.1%. The infection prevalence peaked during October for ducks, and October/November for gulls. From the 16 hemagglutinin subtypes known to infect wild birds, 13 were detected in this study. Low pathogenic H5 was found in 17 dabbling ducks and one gull

    Clustering of Codons with Rare Cognate tRNAs in Human Genes Suggests an Extra Level of Expression Regulation

    Get PDF
    In species with large effective population sizes, highly expressed genes tend to be encoded by codons with highly abundant cognate tRNAs to maximize translation rate. However, there has been little evidence for a similar bias of synonymous codons in highly expressed human genes. Here, we ask instead whether there is evidence for the selection for codons associated with low abundance tRNAs. Rather than averaging the codon usage of complete genes, we scan the genes for windows with deviating codon usage. We show that there is a significant over representation of human genes that contain clusters of codons with low abundance cognate tRNAs. We name these regions, which on average have a 50% reduction in the amount of cognate tRNA available compared to the remainder of the gene, RTS (rare tRNA score) clusters. We observed a significant reduction in the substitution rate between the human RTS clusters and their orthologous chimp sequence, when compared to non–RTS cluster sequences. Overall, the genes with an RTS cluster have higher tissue specificity than the non–RTS cluster genes. Furthermore, these genes are functionally enriched for transcription regulation. As genes that regulate transcription in lower eukaryotes are known to be involved in translation on demand, this suggests that the mechanism of translation level expression regulation also exists within the human genome
    corecore