236 research outputs found

    Pioneering Extension Nutrition Education with iPad Apps: A Development Story

    Get PDF
    Technology can be an effective vehicle for Extension nutrition education. Body Quest: Food of the Warrior is a childhood obesity prevention initiative of the Alabama Cooperative Extension System that successfully incorporates technology in the classroom. With Body Quest, students learn about healthful eating through blended learning involving both classroom instruction and self-directed e-learning via apps. Seven iPad apps excite students and engage them in the learning process. Extension professionals can benefit from our lessons learned for creating a successful app

    Dynamical Modularity in Automata Models of Biochemical Networks

    Full text link
    Given the large size and complexity of most biochemical regulation and signaling networks, there is a non-trivial relationship between the micro-level logic of component interactions and the observed macro-dynamics. Here we address this issue by formalizing the existing concept of pathway modules, which are sequences of state updates that are guaranteed to occur (barring outside interference) in the dynamics of automata networks after the perturbation of a subset of driver nodes. We present a novel algorithm to automatically extract pathway modules from networks and we characterize the interactions that may take place between modules. This methodology uses only the causal logic of individual node variables (micro-dynamics) without the need to compute the dynamical landscape of the networks (macro-dynamics). Specifically, we identify complex modules, which maximize pathway length and require synergy between their components. This allows us to propose a new take on dynamical modularity that partitions complex networks into causal pathways of variables that are guaranteed to transition to specific states given a perturbation to a set of driver nodes. Thus, the same node variable can take part in distinct modules depending on the state it takes. Our measure of dynamical modularity of a network is then inversely proportional to the overlap among complex modules and maximal when complex modules are completely decouplable from one another in the network dynamics. We estimate dynamical modularity for several genetic regulatory networks, including the Drosophila melanogaster segment-polarity network. We discuss how identifying complex modules and the dynamical modularity portrait of networks explains the macro-dynamics of biological networks, such as uncovering the (more or less) decouplable building blocks of emergent computation (or collective behavior) in biochemical regulation and signaling.Comment: 42 pages, 7 figure

    Surface Hydrogen Modeling of Super Soft X-ray Sources: Are They Supernova Ia Progenitors?

    Full text link
    Nova explosions occur on the white dwarf (WD) component of a Cataclysmic Variable stellar system which is accreting matter lost by a companion. A Type Ia supernova explosion is thought to result when a WD, in a similar binary configuration, grows in mass to the Chandrasekhar Limit. Here, we present calculations of accretion of Solar matter, at a variety of mass accretion rates, onto hot (2.3×1052.3 \times 10^{5}K), luminous (30L_\odot), massive (1.25M_\odot, 1.35M_\odot) Carbon-Oxygen WDs. In contrast to our nova simulations where the WD has a low initial luminosity and a thermonuclear runaway (TNR) occurs and ejects material, these simulations do not eject material (or only a small fraction of the accreted material) and the WD grows in mass. A hydrogen TNR does not occur because hydrogen fuses to helium in the surface layers, and we call this process Surface Hydrogen Burning (SHB). As the helium layer grows in mass, it gradually fuses either to carbon and oxygen or to more massive nuclei depending on the WD mass and mass accretion rate. If such a WD were to explode in a SN Ia event, therefore, it would show neither hydrogen nor helium in its spectrum as is observed. Moreover, the luminosities and effective temperatures of our simulations agree with the observations of some of the Super Soft X-ray Binary Sources and, therefore, our results strengthen previous speculation that some of them (CAL 83 and CAL 87 for example) are probably progenitors of SN Ia explosions. Finally, we have achieved SHB for values of the mass accretion rate that almost span the observed values of the Cataclysmic Variables.Comment: Accepted by APJL, 4 pages, 1 figure, LaTex (uses emulateapj.sty

    The Influence of Exercise Intensity On Post-Exercise Appetite Response

    Get PDF
    Please view abstract in the attached PDF file

    High Energy Properties of X-ray Sources observed with BeppoSAX

    Full text link
    We report on highlight results on celestial sources observed in the high energy band (>20 keV) with BeppoSAX. In particular we review the spectral properties of sources that belong to different classes of objects, i.e. stellar coronae (Algol), supernova remnants (Cas A), low mass X-ray binaries (Cygnus X-2 and the X-ray burster GS1826-238), black hole candidates (Cygnus X-1) and Active Galactic Nuclei (Mkn 3). We detect, for the first time, the broad-band spectrum of a stellar corona up to 100 keV; for Cas A we report upper limits to the ^44Ti line intensities that are lower than those available to date; for Cyg X-2 we report the evidence of a high energy component; we report a clear detection of a broad Fe K line feature from Cygnus X-1 in soft state and during its transition to hard state; Mkn 3 is one of several Seyfert 2 galaxies detected with BeppoSAX at high energies, for which Compton scattering process is important.Comment: To appear in the Proceedings of the 1997 Conference on 'The Active X-ray Sky: Results from BeppoSAX and Rossi-XTE' eds. L. Scarsi, F. Fiore and P. Giomm

    Evaluation of the impact of a school gardening intervention on children's fruit and vegetable intake: a randomised controlled trial.

    Get PDF
    Background: Current academic literature suggests that school gardening programmes can provide an interactive environment with the potential to change children’s fruit and vegetable intake. This is the first cluster randomised controlled trial (RCT) designed to evaluate whether a school gardening programme can have an effect on children’s fruit and vegetable intake. Methods: The trial included children from 23 schools; these schools were randomised into two groups, one to receive the Royal Horticultural Society (RHS)-led intervention and the other to receive the less involved Teacher-led intervention. A 24-hour food diary (CADET) was used to collect baseline and follow-up dietary intake 18 months apart. Questionnaires were also administered to evaluate the intervention implementation. Results: A total of 641 children completed the trial with a mean age of 8.1 years (95% CI: 8.0, 8.4). The unadjusted results from multilevel regression analysis revealed that for combined daily fruit and vegetable intake the Teacher-led group had a higher daily mean change of 8 g (95% CI: −19, 36) compared to the RHS-led group -32 g (95% CI: −60, −3). However, after adjusting for possible confounders this difference was not significant (intervention effect: −40 g, 95% CI: −88, 1; p = 0.06). The adjusted analysis of process measures identified that if schools improved their gardening score by 3 levels (a measure of school gardening involvement - the scale has 6 levels from 0 ‘no garden’ to 5 ‘community involvement’), irrespective of group allocation, children had, on average, a daily increase of 81 g of fruit and vegetable intake (95% CI: 0, 163; p = 0.05) compared to schools that had no change in gardening score. Conclusions: This study is the first cluster randomised controlled trial designed to evaluate a school gardening intervention. The results have found very little evidence to support the claims that school gardening alone can improve children’s daily fruit and vegetable intake. However, when a gardening intervention is implemented at a high level within the school it may improve children’s daily fruit and vegetable intake by a portion. Improving children’s fruit and vegetable intake remains a challenging task

    Survival Analysis Part I: Basic concepts and first analyses

    Get PDF
    Survival analysis is a collection of statistical procedures for data analysis where the outcome variable of interest is time until an event occurs. Because of censoring - the nonobservation of the event of interest after a period of follow-up - a proportion of the survival times of interest will often be unknown. It is assumed that those patients who are censored have the same survival prospects as those who continue to be followed, that is, the censoring is uninformative. Survival data are generally described and modelled in terms of two related functions, the survivor function and the hazard function. The survivor function represents the probability that an individual survives from the time of origin to some time beyond time t. It directly describes the survival experience of a study cohort, and is usually estimated by the KM method. The logrank test may be used to test for differences between survival curves for groups, such as treatment arms. The hazard function gives the instantaneous potential of having an event at a time, given survival up to that time. It is used primarily as a diagnostic tool or for specifying a mathematical model for survival analysis. In comparing treatments or prognostic groups in terms of survival, it is often necessary to adjust for patient-related factors that could potentially affect the survival time of a patient. Failure to adjust for confounders may result in spurious effects. Multivariate survival analysis, a form of multiple regression, provides a way of doing this adjustment, and is the subject the next paper in this series

    A Role for Drosophila dFoxO and dFoxO 5′UTR Internal Ribosomal Entry Sites during Fasting

    Get PDF
    One way animals may cope with nutrient deprivation is to broadly repress translation by inhibiting 5′-cap initiation. However, under these conditions specific proteins remain essential to survival during fasting. Such peptides may be translated through initiation at 5′UTR Internal Ribosome Entry Sites (IRES). Here we show that the Drosophila melanogaster Forkhead box type O (dFoxO) transcription factor is required for adult survival during fasting, and that the 5′UTR of dfoxO has the ability to initiate IRES-mediated translation in cell culture. Previous work has shown that insulin negatively regulates dFoxO through AKT-mediated phosphorylation while dFoxO itself induces transcription of the insulin receptor dInR, which also harbors IRES. Here we report that IRES-mediated translation of both dFoxO and dInR is activated in fasted Drosophila S2 cells at a time when cap-dependent translation is reduced. IRES mediated translation of dFoxO and dInR may be essential to ensure function and sensitivity of the insulin signaling pathway during fasting
    corecore