398 research outputs found

    Analysis of bearing wear, whole blood and synovial fluid metal ion concentrations and histopathological findings in patients with failed ASR hip resurfacings

    Get PDF
    Background Adverse Reaction to Metal Debris (ARMD) is still a major reason for revision surgeries in patients with metal-on-metal (MoM) hip replacements. ARMD consists of a wide range of alterations in periprosthetic tissues, most important of which are metallosis, inflammation, pseudotumors and necrosis. Studies investigating histopathological findings and their association to implant wear or indirect measures of wear have yielded inconsistent results. Therefore, we aimed to investigate bearing surface wear volume, whole blood and synovial fluid metal ion concentrations, histopathological findings in periprosthetic tissues and their associations. Methods Seventy-eight patients with 85 hips revised for ARMD were included in the study. Prior to revision surgery, all patients had whole blood chromium and cobalt ion levels assessed. In revision surgery, a synovial fluid sample was taken and analyzed for chromium and cobalt. Periprosthetic tissue samples were taken and analyzed for histopathological findings. Explanted implants were analyzed for bearing wear volume of both acetabular cup and femoral head components. Results Volumetric wear of the failed components was highly variable. The total wear volume of the head and cup had a strong correlation with whole blood chromium and cobalt ion concentrations (Cr: ρ = 0.80, p < 0.001 and Co: ρ = 0.84, p < 0.001) and a bit weaker correlation with fluid chromium and cobalt ion concentrations (Cr: ρ = 0.50, p < 0.01 and Co: ρ = 0.41, p = 0.027). Most tissues displayed only low-to-moderate amounts of macrophages and lymphocytes. Total wear volume correlated with macrophage sheet thickness (ρ = 0.25, p = 0.020) and necrosis (ρ = 0.35, p < 0.01). Whole blood chromium and cobalt ion concentrations had similar correlations. Lymphocyte cuff thickness did not correlate with either total wear volume or whole blood metal ion concentrations, but correlated with the grade of necrosis. Conclusions Bearing wear volume correlated with blood metal ion levels and the degree of necrosis and macrophage infiltration in periprosthetic tissues suggesting a dose-response relationship. Whole blood metal ion levels are a useful tool for clinician to estimate bearing wear and subsequent tissue response

    Prominent astrocytic alpha-synuclein pathology with unique post-translational modification signatures unveiled across Lewy body disorders

    Get PDF
    Alpha-synuclein (aSyn) is a pre-synaptic monomeric protein that can form aggregates in neurons in Parkinson’s disease (PD), Parkinson’s disease with dementia (PDD) and dementia with Lewy bodies (DLB), and in oligodendrocytes in multiple system atrophy (MSA). Although aSyn in astrocytes has previously been described in PD, PDD and DLB, the biochemical properties and topographical distribution of astrocytic aSyn have not been studied in detail. Here, we present a systematic investigation of aSyn astrocytic pathology using an expanded antibody toolset covering the entire sequence and key post-translational modifications (PTMs) of aSyn in Lewy body disorders (LBDs) and in MSA. Astrocytic aSyn was detected in the limbic cortical regions of LBDs but were absent in main pathological regions of MSA. The astrocytic aSyn was revealed only with antibodies against the mid N-terminal and non-amyloid component (NAC) regions covering aSyn residues 34–99. The astroglial accumulations were negative to canonical aSyn aggregation markers, including p62, ubiquitin and aSyn pS129, but positive for phosphorylated and nitrated forms of aSyn at Tyrosine 39 (Y39), and not resistant to proteinase K. Our findings suggest that astrocytic aSyn accumulations represent a major part of aSyn pathology in LBDs and possess a distinct sequence and PTM signature that is characterized by both N- and C-terminal truncations and modifications at Y39. This is the first description that aSyn accumulations are made solely from N- and C-terminally cleaved aSyn species and the first report demonstrating that astrocytic aSyn is a mixture of Y39 phosphorylated and nitrated species. These observations underscore the importance of systematic characterization of aSyn accumulations in different cell types to capture the aSyn pathological diversity in the brain. Our findings combined with further studies on the role of astrocytic pathology in the progression of LBDs can pave the way towards identifying novel disease mechanisms and therapeutic targets

    Curcumin as Treatment for Bladder Cancer : A Preclinical Study of Cyclodextrin-Curcumin Complex and BCG as Intravesical Treatment in an Orthotopic Bladder Cancer Rat Model

    Get PDF
    Objective. To evaluate the antitumor effect of cyclodextrin-curcumin complex (CDC) on human and rat urothelial carcinoma cells in vitro and to evaluate the effect of intravesical instillations of CDC, BCG, and the combination in vivo in the AY-F344 orthotopic bladder cancer rat model. Curcumin has anticarcinogenic activity on urothelial carcinoma and is therefore under investigation for the treatment of non-muscle invasive bladder cancer. Curcumin and BCG share immunomodulating pathways against urothelial carcinoma. Methods. Curcumin was complexed with cyclodextrin to improve solubility. Four human urothelial carcinoma cell lines and the AY-27 rat cell line were exposed to various concentrations of CDC in vitro. For the in vivo experiment, the AY-27 orthotopic bladder cancer F344 rat model was used. Rats were treated with consecutive intravesical instillations of CDC, BCG, the combination of CDC+BCG, or NaCl as control. Results. CDC showed a dose-dependent antiproliferative effect on all human urothelial carcinoma cell lines tested and the rat AY-27 urothelial carcinoma cell line. Moreover, intravesical treatment with CDC and CDC+BCG results in a lower percentage of tumors (60% and 68%, respectively) compared to BCG (75%) or control (85%). This difference with placebo was not statistically significant (p=0.078 and 0.199, respectively). However, tumors present in the placebo and BCG-treated rats were generally of higher stage. Conclusions. Cyclodextrin-curcumin complex showed an antiproliferative effect on human and rat urothelial carcinoma cell lines in vitro. In the aggressive orthotopic bladder cancer rat model, we observed a promising effect of CDC treatment and CDC in combination with BCG.Peer reviewe

    Applicability of current staging/categorization of α-synuclein pathology and their clinical relevance

    Get PDF
    In Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) α-synuclein (αS) pathology is seen that displays a predictable topographic distribution. There are two staging/categorization systems, i.e. Braak’s and McKeith’s, currently in use for the assessment of αS pathology. The aim of these diagnostic strategies in pathology is, in addition to assess the stage/severity of pathology, to assess the probabilities of the related clinical symptomatology i.e. dementia and extrapyramidal symptoms (EPS). Herein, we assessed the applicability of these two staging/categorization systems and the frequency of dementia and EPS in a cohort of 226 αS-positive-subjects. These subject were selected from a large autopsy sample (n = 1,720), irrespective of the clinical presentation, based on the detection of αS-immunoreactivity (IR) in one of the most vulnerable nuclei; in the dorsal motor nucleus of vagus, substantia nigra and basal forebrain. The frequency of αS-IR lesions in this large cohort was 14% (248 out of 1,720). If applicable, each of the 226 subjects with all required material available was assigned a neuropathological stage/category of PD/DLB and finally the neuropathological data was analyzed in relation to dementia and EPS. 83% of subjects showed a distribution pattern of αS-IR that was compatible with the current staging/categorization systems. Around 55% of subjects with widespread αS pathology (Braak’s PD stages 5–6) lacked clinical signs of dementia or EPS. Similarly, in respect to those subjects that fulfilled the McKeith criteria for diffuse neocortical category and displaying only mild concomitant Alzheimer’s disease-related pathology, only 48% were demented and 54% displayed EPS. It is noteworthy that some subjects (17%) deviated from the suggested caudo-rostral propagation suggesting alternative routes of progression, perhaps due to concomitant diseases and genetic predisposition. In conclusion, our results do indeed confirm that current staging/categorization systems can readily be applied to most of the subjects with αS pathology. However, finding that around half of the subjects with abundant αS pathology remain neurologically intact is intriguing and raises the question whether we do assess the actual disease process

    An object oriented Python interface for atomistic simulations

    Get PDF
    Programmable simulation environments allow one to monitor and control calculations efficiently and automatically before, during, and after runtime. Environments directly accessible in a programming environment can be interfaced with powerful external analysis tools and extensions to enhance the functionality of the core program, and by incorporating a flexible object based structure, the environments make building and analysing computational setups intuitive. In this work, we present a classical atomistic force field with an interface written in Python language. The program is an extension for an existing object based atomistic simulation environment.&nbsp;</p

    Host-specific factors affect the pathogenesis of adverse reaction to metal debris

    Get PDF
    BACKGROUND: Adverse Reaction to Metal Debris (ARMD) is a major reason for revision surgeries in patients with metal-on-metal (MoM) hip replacements. Most failures are related to excessively wearing implant producing harmful metal debris (extrinsic factor). As ARMD may also occur in patients with low-wearing implants, it has been suggested that there are differences in host-specific intrinsic factors contributing to the development of ARMD. However, there are no studies that have directly assessed whether the development of ARMD is actually affected by these intrinsic factors. METHODS: We included all 29 patients (out of 33 patients) with sufficient data who had undergone bilateral revision of ASR MoM hips (58 hips) at our institution. Samples of the inflamed synovia and/or pseudotumour were obtained perioperatively and sent to histopathological analysis. Total wear volumes of the implants were assessed. Patients underwent MARS-MRI imaging of the hips preoperatively. Histological findings, imaging findings and total wear volumes between the hips of each patient were compared. RESULTS: The difference in wear volume between the hips was clinically and statistically significant (median difference 15.35 mm^{3}, range 1 to 39 mm^{3}, IQR 6 to 23 mm^{3}) (p  0.05 for all comparisons). These features included macrophage sheet thickness, perivascular lymphocyte cuff thickness, presence of plasma cells, presence of diffuse lymphocytic infiltration and presence of germinal centers. CONCLUSIONS: Despite the significantly differing amounts of wear (extrinsic factor) seen between the sides, majority of the histological findings were similar in both hips and the presence of pseudotumour was symmetrical in most hips. As a direct consequence, it follows that there must be intrinsic factors which contribute to the symmetry of the findings, ie. the pathogenesis of ARMD, on individual level. This has been hypothesized in the literature but no studies have been conducted to confirm the hypothesis. Further, as the threshold of metal debris needed to develop ARMD appears to be largely variable based on the previous literature, it is likely that there are between-patient differences in these intrinsic factors, ie. the host response to metal debris is individual

    Alzheimer's disease pathology explains association between dementia with Lewy bodies and APOE-ε4/TOMM40 long poly-T repeat allele variants.

    Get PDF
    Introduction: The role of TOMM40-APOE 19q13.3 region variants is well documented in Alzheimer's disease (AD) but remains contentious in dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD). Methods: We dissected genetic profiles within the TOMM40-APOE region in 451 individuals from four European brain banks, including DLB and PDD cases with/without neuropathological evidence of AD-related pathology and healthy controls. Results: TOMM40-L/APOE-ε4 alleles were associated with DLB (OR TOMM40 -L = 3.61; P value = 3.23 × 10-9; OR APOE -ε4 = 3.75; P value = 4.90 × 10-10) and earlier age at onset of DLB (HR TOMM40 -L = 1.33, P value = .031; HR APOE -ε4 = 1.46, P value = .004), but not with PDD. The TOMM40-L/APOE-ε4 effect was most pronounced in DLB individuals with concomitant AD pathology (OR TOMM40 -L = 4.40, P value = 1.15 × 10-6; OR APOE -ε4 = 5.65, P value = 2.97 × 10-8) but was not significant in DLB without AD. Meta-analyses combining all APOE-ε4 data in DLB confirmed our findings (ORDLB = 2.93, P value = 3.78 × 10-99; ORDLB+AD = 5.36, P value = 1.56 × 10-47). Discussion: APOE-ε4/TOMM40-L alleles increase susceptibility and risk of earlier DLB onset, an effect explained by concomitant AD-related pathology. These findings have important implications in future drug discovery and development efforts in DLB

    Diagnostic value of cerebrospinal fluid alpha-synuclein seed quantification in synucleinopathies

    Get PDF
    Several studies have confirmed the α-synuclein real-time quaking-induced conversion (RT-QuIC) assay to have high sensitivity and specificity for Parkinson's disease. However, whether the assay can be used as a robust, quantitative measure to monitor disease progression, stratify different synucleinopathies and predict disease conversion in patients with idiopathic REM sleep behaviour disorder remains undetermined. The aim of this study was to assess the diagnostic value of CSF α-synuclein RT-QuIC quantitative parameters in regard to disease progression, stratification and conversion in synucleinopathies. We performed α-synuclein RT-QuIC in the CSF samples from 74 Parkinson's disease, 24 multiple system atrophy and 45 idiopathic REM sleep behaviour disorder patients alongside 55 healthy controls, analysing quantitative assay parameters in relation to clinical data. α-Synuclein RT-QuIC showed 89% sensitivity and 96% specificity for Parkinson's disease. There was no correlation between RT-QuIC quantitative parameters and Parkinson's disease clinical scores (e.g. Unified Parkinson's Disease Rating Scale motor), but RT-QuIC positivity and some quantitative parameters (e.g. Vmax) differed across the different phenotype clusters. RT-QuIC parameters also added value alongside standard clinical data in diagnosing Parkinson's disease. The sensitivity in multiple system atrophy was 75%, and CSF samples showed longer T50 and lower Vmax compared to Parkinson's disease. All RT-QuIC parameters correlated with worse clinical progression of multiple system atrophy (e.g. change in Unified Multiple System Atrophy Rating Scale). The overall sensitivity in idiopathic REM sleep behaviour disorder was 64%. In three of the four longitudinally followed idiopathic REM sleep behaviour disorder cohorts, we found around 90% sensitivity, but in one sample (DeNoPa) diagnosing idiopathic REM sleep behaviour disorder earlier from the community cases, this was much lower at 39%. During follow-up, 14 of 45 (31%) idiopathic REM sleep behaviour disorder patients converted to synucleinopathy with 9/14 (64%) of convertors showing baseline RT-QuIC positivity. In summary, our results showed that α-synuclein RT-QuIC adds value in diagnosing Parkinson's disease and may provide a way to distinguish variations within Parkinson's disease phenotype. However, the quantitative parameters did not correlate with disease severity in Parkinson's disease. The assay distinguished multiple system atrophy patients from Parkinson's disease patients and in contrast to Parkinson's disease, the quantitative parameters correlated with disease progression of multiple system atrophy. Our results also provided further evidence for α-synuclein RT-QuIC having potential as an early biomarker detecting synucleinopathy in idiopathic REM sleep behaviour disorder patients prior to conversion. Further analysis of longitudinally followed idiopathic REM sleep behaviour disorder patients is needed to better understand the relationship between α-synuclein RT-QuIC signature and the progression from prodromal to different synucleinopathies
    corecore