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Abstract

Programmable simulation environments allow one to monitor and control calculations efficiently and automat-
ically before, during, and after runtime. Environments directly accessible in a programming environment can be
interfaced with powerful external analysis tools and extensions to enhance the functionality of the core program, and
by incorporating a flexible object based structure, the environments make building and analysing computational setups
intuitive. In this work, we present a classical atomistic force field with an interface written in Python language. The
program is an extension for an existing object based atomistic simulation environment.
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1. Introduction

Traditionally, the focus in the development of scientific codes has been on the speed, accuracy, and algorithmic
functionality, as these are the most important factors deciding the computation cost, reliability, and versatility of the
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simulations. User friendliness and the flexibility of the interface are often not key concerns. Focus on computational
speed usually means profound code optimization specifically for certain types of calculations — sometimes even for
specific hardware — and this naturally limits the amount of control the user can be given.

Codes with more emphasis on accessibility have emerged during the last decade. In general, user interface design
aims at making it easy and efficient for the user to interact with software. For scientific codes, accessibility typically
implies it is easy, even intuitively so, for the user to build, control, and analyze the simulations. Building is easy
when simulation components can be placed freely; control is easy if choosing how to run or constrain the dynamics
of the system is straightforward; and analysis is easy if the simulation data can be readily extracted and fed to other
tools. In all these aspects, accessibility implies that (i) there are plenty of options so that the user can pick the optimal
methods, (ii) the commands for communicating user choices to the program and extracting results are, at least mostly,
understandable without an external manual, and (iii) the program can also communicate with other programs and
operations can be automated.

One strategy for achieving all of these aspects of accessibility is to construct a programming interface for the
code, and Python has become a popular interface language, as it has both powerful scripting capability as well as
advanced features of object oriented programming. As an interpreted language it is slow to execute, but it is possible
to implement the computationally intensive parts in more efficient compiled languages such as C or Fortran in order
to gain back computational speed.

A major advantage of an object oriented interface is that it structures information in a format which humans can
understand and manipulate. Parameters have understandable names and object ideally have intuitive connections.
Python can be run in an interactive mode, and there the in-code documentation and query tools allow the user to find
the proper keywords even without a manual. Besides streamlining the setup of calculations and minimizing the risk of
errors, an intuitive user interface makes it easier for newcomers to start using the program and understand the working
principles. This can make the code a tool for both research and teaching.

In this work, we present a Python library for evaluations of classical atomistic force fields. The library is designed
to work with the Atomistic Simulation Environment (ASE) [1], an established Python framework for atomistic and
electron structure calculations. ASE follows the paradigm of object oriented programming to wrap simulation entities
such as atomic structures or dynamics algorithms in Python objects, which are easy to manipulate by both human
users and script.

Although ASE provides tools for building and evolving atomic structures, it relies on external programs to deter-
mine the interactions between the atoms. Interfaces exist to several such codes, called calculators in ASE, at classical
(e.g., LAMMPS [2]) and density functional theory level (e.g., GPAW [3]). Our library, Pysic, is also a calculator for
ASE at the classical level, but instead of providing just a Python interface to an external calculator, Pysic reduces
atomistic potentials to Python objects allowing the user to build the interaction model from components. Pysic is
not concerned with constructing an atomic structure or its dynamic evolution, as these are already handled in ASE.
Instead Pysic calculates the energies and forces of a given structure, i.e., it defines the potential energy surface of the
system.

For instance, Pysic describes local pair and many body potentials with Potential objects (see Sections 2.1,
3.1.2). Many body bond order factors can be added as BondOrderParameters objects (Sections 2.2, 3.1.3). Standard
Ewald summation is supported and accessed through the CoulombSummation object (Sections 2.4, 3.1.5). Charge
dynamics can be controlled using the ChargeRelaxation object (Sections 2.5, 3.1.6). The complete potential, which
may be passed to ASE for dynamical simulations, is contained in the Pysic object (Section 3.1.1).

2. Functionality

2.1. Local potentials

A library of pair and many body potentials are included in Pysic and also tabulated potentials can be used. The
preprogrammed potentials range from simple harmonic springs to elaborate bond order potentials such as the Tersoff

potential [4]. Potentials can be targeted to atoms based on their element (such as ’C’ or ’H’), their index (a unique
number for each atom), or a tag (a numeric label, which can be the same for a group of atoms).

By default, all local potentials are truncated at a cutoff distance specified by the user. However, this may lead
to discontinuities in energy and forces and numeric noise. To counter this, smooth cutoffs can be used, where the
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potentials are multiplied by a function decaying to zero at the cutoff, Ṽ(r) = f (r)V(r). The cutoff function used in
Pysic is

f (r) =


1, r ≤ rsoft
1
2

(
1 + cos π r−rsoft

rhard−rsoft

)
, rsoft < r ≤ rhard

0, r > rhard

. (1)

This cutoff can also be applied to potentials that do not decay as a function of distance to ensure finite bond lengths.

2.2. Bond order and density-like potentials
Bond order potentials are typically of the type

U =
∑
(i, j)

bi jui j, (2)

where ui j is a pair potential defined, and bi j is the bond order factor. Analogously for single atom potentials,

U =
∑

i

biui. (3)

This is different from being just a multiplication of two pair potentials by the fact that the bond order factor actually
depends on other atoms besides i and j, i.e., it is a many body factor typically of the form (for a pair potential ui j)

bi j =
1
2

(b̃i j + b̃ ji), (4)

b̃i j = si j

∑
k

ci jk

 , (5)

where si j is a scaling function and
∑

k ci jk is a sum of atomic triplets including the bond between atoms i and j. This
means that the pair interaction of two atoms is modified according to the surroundings of the atoms. For instance,
if an atom is overcoordinated, the bond order factor can effectively weaken the bonds the atom forms to make sure
increasing the number of bonds an atom forms is not always favoured. Also effects such as preferred relative orienta-
tion of the bonds can be included in the bond order factor. Physically this can be interpreted to represent the effects
of atomic valence and orbital hybridization, which dictate the optimal number and configuration of covalent bonds an
atom likes to form.

For a single atom, the potential has the form

bi = si

∑
k

cik

 , (6)

which can be thought of as the measure of the atom’s coordination or local density. Such potentials are used, for
instance, to represent many body effects in delocalized metallic bonding.

A classic example of a bond order factor is the Tersoff potential [4], which describes the fourfold coordinated
bonding structure of silicon. It is defined as

b̃i j =

1 +

β j

∑
k,i, j

ξi jkgi jk

η j

− 1

2η j

(7)

ξi jk = f (ri j) exp
[
aµ(ri j − r jk)µ

]
(8)

gi jk = 1 +
c2

j

d2
j

−
c2

j

d2
j + (h j − cos θi jk)2

. (9)

Here f is a cutoff function (1) and θi jk is the geometric angle defined by the atomic triplet i- j-k.
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The Sutton-Chen potential [5] is an example of a density-like potential, where the energy of an atom is directly
related to its neighbour density. The potential contains the term

U = −c
∑

i

√
ρi (10)

ρi =
∑

j

(
a
ri j

)m

, (11)

and this is reproduced in bond order formalism, equations (3) and (6), with

ui = −c (12)
si(x) =

√
x (13)

cik =

(
a
rik

)m

. (14)

2.3. Combined potentials

Most of the potentials in the library of interactions offered by Pysic are mathematically simple and often even not
very useful on their own. For instance, there are potentials which only depend on the charges of a pair of atoms (i, j),
ui j(qi, q j) = qn1

i qn2
j , not their separation. However, it is possible to combine these potentials to form more complicated

descriptions. For instance, declaring several potentials us
i j affecting the same atoms (i, j) (here s is an index for the list

of potentials) will simply sum the potentials

U =
∑
(i, j)

∑
s

us
i j. (15)

(Similarly for 1-body, 3-body etc.) It is also possible to add bond order factors bi j and cutoff functions fi j, and multiply
the potentials to obtain

U =
∑
(i, j)

∑
s

∏
p

f s,p
i j bs,p

i j us,p
i j . (16)

For example, a charge dependent potential u1
i j(qi, q j) = qiq j and a distance dependent potential u2

i j(ri j) = ε/ri j can be
combined to form U(ri j, qi, q j) = u1

i j(qi, q j)u2
i j(ri j) = εqiq j/ri j. An explanation of how this is done in the program is

given in Section 3.1.4).
Once a potential (16) has been defined, the calculation of forces is handled automatically.

Fα = −∇αU (17)

= −
∑
(i, j)

∑
s

∇α

∏
p

f s,p
i j bs,p

i j us,p
i j

 (18)

= −
∑
(i, j)

∑
s

∑
p

∇α( f s,p
i j bs,p

i j us,p
i j )

∏
q,p

( f s,q
i j bs,q

i j us,q
i j ), (19)

(20)

where

∇α( f s,p
i j bs,p

i j us,p
i j ) = (∇α f s,p

i j )bs,p
i j us,p

i j + (21)

f s,p
i j (∇αbs,p

i j )us,p
i j + (22)

f s,p
i j bs,p

i j (∇αus,p
i j ). (23)

Typically the cutoffs fi j are only a function of the distance between atoms i and j, as are pair potentials ui j

(similarly 3-body potentials ui jk depend on the positions of the atoms i, j, k and so on). This means differentiation

4



with respect to atom α gives non-zero contributions to (21)-(23) only when α is either i or j. However, this is not the
case for bond order factors. For a factor described by equation (5), the gradient is

∇αbi j =
1
2

(∇αb̃i j + ∇αb̃ ji) (24)

∇αb̃i j = s′i j

∑
k

ci jk

∑
l

∇αci jl. (25)

Since the index l sums over all neighbours of atoms i and j, the gradients ∇αci jl are in general non-zero for all the
atoms in this neighbourhood, i.e., bond order factors describe true many body interactions. The physical interpretation
is that when the presence of an external atom l affects the strength of the bond between atoms i and j, this leads to an
effective interaction between the external atom and the bonding pair.

2.4. Coulomb interaction

Direct summation of potentials decaying at the rate 1/r, such as the Coulomb potential, is only possible for finite
systems. In periodic systems, which extend to infinity, the sum

E =
∑
(i, j)

1
4πε0

qiq j

ri j
(26)

converges only conditionally.
Pysic implements the standard Ewald summation method [6] for evaluating the infinite sum (26). This technique is

based on dividing the charge density ρ(r) =
∑

i qiδ(r − ri) in parts for which the sum (26) can be efficiently calculated
in by either real or reciprocal space integration.

The split

ρ(r) = ρs(r) + ρl(r) (27)

ρs(r) =
∑

i

[
qiδ(r − ri) − qiGσ(r − ri)

]
(28)

ρl(r) =
∑

i

qiGσ(r − ri) (29)

Gσ(r) =
1

(2πσ2)3/2 exp
(
−
|r|2

2σ2

)
(30)

is used in Pysic. Here, Gσ are Gaussian functions which screen the point charges qi in real space. The subscript s
denotes short ranged and l long ranged interactions.

Using this split, the energy of the system can be written

E = Es + El + Ec, (31)

where the components Es and El are the short and long ranged parts of the interaction, respectively, and Ec is a
possible correction for non-zero total charge.

The short ranged part of the energy is calculated in real space

Es =
1

4πε0

∫
ρs(r)ρs(r′)
|r − r′|

d3rd3r′ (32)

=
1

4πε0

∑
(i, j)

qiq j

ri j
erfc

(
ri j

σ
√

2

)
−

1
4πε0

1
√

2πσ

N∑
i

q2
i , (33)

and the complementary error function erfc(r) = 1 − erf(r) = 1 − 2
√
π

∫ r
0 e−t2/2dt makes the sum converge rapidly as

ri j/σ → ∞. Physically this means that examined from afar, a point charge is completely covered by the screening
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density and has the apparent total charge of zero. Here, the first sum represents the Coulomb interaction between
different point charges and their screening charges, and it is carried over all pairs in the infinite system, but truncated
at some reasonable separation ri j < rcut. The second sum represents the self-interaction between a point charge and
the Gaussian charge density which screens it. This sum is over all the atoms in the simulation box (N atoms in total)
and adds a constant shift in energy.

The long ranged part of the energy,

El =
1

4πε0

∫
ρl(r)ρl(r′)
|r − r′|

d3rd3r′ (34)

cannot be calculated in real space since the screening densities in ρl appear as point charges when viewed from a
distance. However, since ρl is smooth, a Fourier transform can be applied and the sum (34) can be shown to equal

El =
1

2Vε0

∑
k,0

e−σ
2k2/2

k2 |S (k)|2 (35)

S (k) =

N∑
i

qieik·ri , (36)

where the k-sum is over the vectors of the reciprocal lattice. Again, the sum is truncated at some sufficiently
large value of |k|. It is common to truncate the sum over k-vectors simply by changing to a finite sum

∑
k,0 →∑nx

kx=−nx

∑ny

ky=−ny

∑nz
kz=−nz,k,0, but Pysic uses a spherical truncation

∑
k,0 →

∑
k,0,k<kcut

. The function S (k) is the struc-
ture factor, and it is calculated by summing over all the atoms in the simulation supercell.

Note that different ways to parameterize these screening functions are used in the literature. In the formulation
used here, a large σ corresponds to wide screening functions, meaning fast reciprocal convergence, small kcut, but
slow real space convergence, large rcut. Vice versa for a small σ you need a large kcut and small rcut.

If there is a net charge in the system, the Coulomb energy is infinite. This problem can be circumvented by
assigning a uniform, neutralizing background charge density in the simulation volume V and an additional energy
component is associated with the interaction of the point charges and this background charge

Ec = −
σ2

4Vε0

∣∣∣∣∣∣∣∑i

qi

∣∣∣∣∣∣∣
2

. (37)

Coulombic forces are obtained as the gradient of the energy Fα = −∇αE = −∇αEs − ∇αEl, where α denotes the
atom affected by the force. We get

−∇αEs =
qα

4πε0

∑
j

q j

erfc
(

rα j

σ
√

2

)
1

r2
α j

+
1
σ

√
2
π

exp

− r2
α j

2σ2

 1
rα j

 r̂α j, (38)

where r̂α j = rα j/rα j is the unit vector pointing from atom α to atom j, and

−∇αEl = −
1

2Vε0

∑
k,0

e−σ
2k2/2

k2 2Re[S ∗(k)∇αS (k)] (39)

∇αS (k) = qαk(− sin k · rα + i cos k · rα). (40)

2.5. Dynamic atomic charges

Pysic treats atomic charges as points, although one can also introduce extra charges as dummy atoms. More
importantly, it is possible to allow the magnitude of these charges to change dynamically during the simulation to
simulate charge redistribution processes.

Assigning an effective inertia Mq to the point charges, the system of atomic positions ri and charges qi can be
described with the Lagrangian [7]
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L({q̇}, {ṙ}, {q}, {r}) =
∑

i

1
2

miṙ2
i +

∑
i

1
2

Mqq̇2
i − U({q}, {r}) − ν

∑
i

qi, (41)

where the last term is a Lagrange multiplier corresponding to the constraint of fixed total charge
∑

i qi = Q.
The dynamics of this system are given by the equations of motion

mir̈i = −∇iU (42)

Mqq̈i = −
∂U
∂qi
− ν. (43)

The ”force” acting on charge qi, χi = −∂U/∂qi, is the electropositivity (inverse electronegativity) of atom i. The
multiplier ν that conserves the total charge equals the average electropositivity

ν = χ̄ = −
1
N

∑
i

∂U
∂qi

, (44)

which is seen by calculating the second derivative of the total charge

Q̈ =
1

NMq

∑
i

q̈i =
1
N

∑
i

(
−
∂U
∂qi
− ν

)
=

1
N

∑
i

χi − χ̄ = 0. (45)

Similarly, the charges of subsystems such as molecules can be constrained by equaling νi with the average elec-
tropositivity of the molecule the atoms is a part of. Substituting (44) in (43) leads to the equations of motion for
charge

Mqq̈i = −
∂U
∂qi
− χ̄ = ∆χ. (46)

The physical interpretation of (46) is that sites that are more electropositive than average attract positive charge,
and those that are more electronegative than average attract negative charge. As these equations do not limit the local
charges in any way — only the total charge is conserved — it is possible to drive the system towards having atoms
with infinite positive and negative charges. To prevent this, additional restrictions such as local charge dependent
potentials should always be included.

Instead of energy conserving charge dynamics, it may be desirable to instead minimize the total energy of the
system with respect to the charge distribution. In Pysic, this can be done either by damping the charge dynamics

Mqq̈i = ∆χ − ηq̇i, (47)

where η is a damping factor, or through a constrained sequential least squares programming algorithm using SciPy
optimization routines [8].

It is also possible to run the charge dynamics with a potentiostat instead of the constant charge constraint. Physi-
cally this corresponds to connecting the simulation to an external electrode, which fixes the electrostatic potential of
the system, but allows charge to flow in or out of the system. The condition for equilibrium with an external potential
is that the electropositivity of each atom should equal the constraining potential χi = Φ, so that there is no energy
change if charge is brought in or taken out of the system. For a dynamic simulation, this corresponds to the equation
of motion (cf. (46))

Mqq̈i = −
∂U
∂qi
− Φ. (48)

2.6. Hybrid calculations
The modularity of the potential extends beyond the internal potentials of Pysic. It is possible to use Pysic as a

wrapper for other calculators and analyze the system using various descriptions. For instance, one may wish to run
calculations at the DFT level but impose constraint forces on the system with Pysic. It is similarly possible to cut the
system into domains and apply different methods on the various parts in order to run a quantum mechanics–molecular
mechanics (QM/MM) hybrid simulation. In such a simulation, Pysic can act as a filter for dividing the system in
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quantum mechanical and classical regions and passing these subsystems to other calculators. The classical domain
can naturally also be directly handled in Pysic itself.

For creating hybrid systems, Pysic provides a special HybridCalculator object. With it one can divide atomic
structures into any number of subsystems and define energetic interactions between them. A subsystem is represented
by a Subsystem object which has a unique name for identification, indices or a tag specifying a certain subset of
atoms from the full atomic structure and an ASE compatible calculator used for the atoms. Interactions between the
subsystems are defined with Interaction objects and any of Pysic’s potentials can be used to energetically connect
the subsystems. After the subsystems and interactions have been defined, one can use the HybridCalculator like
any regular ASE Calculator.

There are many strategies for dealing with Coulomb interactions between QM and MM subsystems, and Pysic
uses the mechanical embedding scheme [9], i.e. the interactions are modeled at the MM level. Whereas the most
basic implementation of mechanical embedding uses parametrized and static charges for the primary QM system,
Pysic provides the option of calculating the charges with Bader analysis [10]. In this way no charge parameters are
required for the primary system and the dynamic nature of the electronic charge can be taken into account.

To correct the errors produced by defining subsystem boundaries between covalent bonds, Pysic uses the standard
hydrogen link atom approach [9]. The hydrogen link atoms can be defined in the Interaction object and they are
added to the QM subsystem to correct its electronic structure. More advanced approaches to the interface between the
QM and MM subsystems are in development.

3. Program structure

3.1. Python classes

Pysic has an object oriented interface, which means the user should build an interaction model from objects
represented by Python classes. For instance, simple interactions are build from Potential objects, which may be
modified with BondOrderParameters and extended with a CoulombSummation algorithm. The complete model
must be wrapped in a Pysic object, which acts as the interface to the ASE library or other programs.

3.1.1. Pysic class
Pysic is the class which interfaces with external scripts and libraries making it the class at the top of the

class hierarchy. That is, it implements the methods required by an ASE calculator, such as get forces() and
get potential energy(), which invoke the evaluation of these quantities. The most basic use of Pysic involves
attaching the calculator to an atomic structure defined in ASE (ase.Atoms) and including a list of Potential objects
to define the interactions.

3.1.2. Potential class
The user can define a simple pair or many body potential as a Potential object including the type, parameteriza-

tion, and affected atoms for the interaction. For instance, a Lennard-Jones potential U(r) = ε[(σ/r)12−(σ/r)6] between
two He atoms would be defined as Potential(’LJ’, symbols = [’He’, ’He’], parameters = [epsilon,

sigma]). Alternatively, one can first create the potential only specifying its type and fully define it using methods
such as set symbols([’He’, ’He’]) and set parameter value(’epsilon’, 1.0). All local potentials also
need a cutoff specification to truncate the summation of atomic pairs in a periodic system, as explained in Section 2.1.
This is done with methods set cutoff() and set cutoff margin().

Typically, a simulation will contain several types of atoms interacting with different potentials. To construct the in-
teraction model for such a system, one defines a separate Potential object for each pair or many body interaction and
all of them are given to a Pysic object to wrap them together. This is done with methods pysic.add potential()

or pysic.set potentials().

3.1.3. BondOrderParameters and Coordinator classes
Bond order factors and density-like potentials, as described in Section 2.2, are defined using BondOrderParameters

objects. These contain the classification of a bond order factor similarly to how a Potential defines a potential.
Also analogously to the way a calculator object Pysic can contain several Potential objects in order to sum them,
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a Coordinator object can contain several BondOrderParameters. This allows both inclusion of different types of
components ci jk and control of the scaling function fi j, as described in equation (5).

The class hierarchy for defining bond order factors works as follows: In terms of equations (2) and (5), ui j is
described by the Potential while the function si j and factors ci jk are defined by one or several BondOrderFactors.
If factors are calculated with different parameters (say, according to the chemical elements involved), these must be
given using separate BondOrderParameters objects. All the bond order parameters affecting the same potential are
then wrapped in a Coordinator object, which is attached to the Potential that is to be modified by the bond order
factor.

3.1.4. ProductPotential and CompoundPotential classes
Complicated potentials involving products as defined by equation (16) are constructed using the ProductPotential

class. The multiplication is invoked by wrapping ordinary Potential objects in a ProductPotential, which is
passed to a Pysic calculator just as an ordinary Potential object would be.

The CompoundPotential class is the most sophisticated potential class in Pysic. It can be used to join several
potentials together in a single object and also include other functionality such as parameter checks on Python level.
It is an abstract class in the sense that it only defines the framework for building the potential wrappers, but the
subclasses SuttonChenPotential and Comb are also included demonstrating the realization of a complete potential.

3.1.5. CoulombSummation class
The CoulombSummation class controls Ewald summation for calculating the Coulomb interaction in periodic

systems (see Section 2.4). The calculation is invoked by attaching the CoulombSummation to a Pysic calcula-
tor. The object contains the parameters controlling the summation algorithm, kcut, rcut, and σ. A utility function
pysic.interactions.coulomb.estimate ewald parameters() can be used for obtaining a first guess for the
parameters based on a given value for the real space cutoff rcut, but the convergence should still always be checked
by the user. Currently, only the regular Ewald algorithm has been implemented, but the class is designed to represent
other variants as well.

Note that the algorithm assumes the system to be periodic in all directions. CoulombSummation should not be
used for a finite system — in such a case the electrostatic interaction should be defined directly using Potential

objects.

3.1.6. ChargeRelaxation class
Dynamic charges (see Section 2.5) are invoked using the ChargeRelaxation class. It defines the algorithm used

as well as the control parameters. It is also possible to set up a chain of relaxation algorithms to run a simulation with
a sequence of different parameters or even algorithms.

In order to run charge dynamics, electronegativities need to be evaluated by a Pysic calculator, which needs to
be linked to the ChargeRelaxation.There are two ways to do the link. After a one-way link is formed by attaching
Pysic to the ChargeRelaxation with the method set calculator(), the dynamics are invoked with the method
charge relaxation(). This will return the result of the simulation, but it will not affect the atomic system being
evaluated nor will the dynamics be invoked when energies or forces are evaluated. If a two-way link is created
through the set relaxation() method in Pysic, charge dynamics are run automatically before every energy or
force calculation. In addition, it can be controlled separately whether the charges in the original atomic structure are
automatically updated after relaxation or not.

3.1.7. HybridCalculator class
Used to create and perform hybrid calculations. This class is a fully compatible ASE calculator that can divide

atomic structures into any number of subsystems and define energetic interactions between them. Subsystems are
added with the function add_subsystem() and interactions between subsystems are added with add_interaction().

3.1.8. Subsystem class
The SubSystem class works as an interface for defining subsystems in hybrid simulations. Through it you can de-

fine the atoms that belong to the subsystem and the calculator that is used for them. SubSystem objects also provides
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special options for QM subsystems: you can setup dynamical charge calculation with enable_charge_calculation()
and cell optimization with enable_cell_optimization().

You can define the atoms in the subsystem as a list of indices, with a tag or with a special string: “remaining”,
which means all the atoms that are not yet assigned to a subsystem.

3.1.9. Interaction class
The Interaction class works as an interface for defining interactions and link atoms between subsystems in hy-

brid calculations. With the methods add_potential(), set_potentials(), enable_coulomb_potential()
and enable_comb_potential() you can define the Pysic potentials that are present between the subsystems. With
add_hydrogen_links() you can setup the hydrogen link atoms.

3.1.10. FastNeighborList class
ASE contains the class NeighborList for listing neighbours, but it is a brute force algorithm meant for small sys-

tems. Pysic extends this class to FastNeighborSearch by implementing its own O(n) neighbour search algorithm.
The algorithm is based on a combined Verlet list and cell-linked list scheme [11]. First, the simulation volume is
divided into subvolumes whose size depends on the range of interactions. Then, for each atom, the volume containing
the atom is found. Lastly, for each atom, the atoms located in the same and adjacent subvolumes are examined to see
if they are interacting and closer to each other than the range of their interaction. If they are, they are marked in the
neighbour lists as a pair of neighbours.

The spatial decomposition algorithm assumes the range of interactions is at most half the minimum width of the
simulation cell. If this is not the case, the program will fall back on the ASE implementation.

3.2. Python–Fortran interface

Pysic is controlled through a Python interface, where interactions and algorithms are built as objects. Some
algorithms such as charge dynamics are evaluated in Python using, e.g., the NumPy and SciPy libraries [12]. However,
most of the heavy computation is implemented in MPI (message passing interface) parallel Fortran90 due to the
difference in execution speed of the languages. The Fortran routines are linked to the Python interface using the f2py
tool, which is part of NumPy [13].

Fortran90 supports custom types but not, e.g., polymorphism, which prevents direct copying of the Python struc-
ture in Fortran. Instead, when, for instance, the potential energy must be evaluated, the atomic structure and interac-
tion model defined in Python are replicated in Fortran in a format ready for numeric evaluation. Simultaneously, the
Python interface keeps track of the information fed to the Fortran core and makes sure only the necessary information
is passed between the two languages.

The Fortran core appears in Python as the module pysic.pysic fortran.pysic interface containing a li-
brary of functions used for accessing the numeric routines. However, in normal circumstances the user should not
directly access these functions. They are mostly called from the Pysic class as needed.

3.3. Additional utilities

Pysic also features utility modules and links to external libraries, which are not necessary for the operation of core
functions such as energy calculations, but may be useful.

3.3.1. MPI parallellization
The heavy numeric routines are MPI parallel, and the parallellization has been implemented on Fortran level. To

utilize this parallellization, the Fortran core must be compiled in an MPI compatible environment. Since the parallel
algorithms are hidden from the Python interface, no Python MPI libraries are needed for parallel calculations. It is
enough to just launch a Python script in an MPI mode.

Although not a full MPI library, the module pysic.utility.mpi contains a group of functions allowing direct
access to the MPI routines in Fortran from Python. This allows also for MPI programming in Python.
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3.3.2. HDF5 archiving
The module pysic.utility.archive contains functions for archiving data. The archiving is based on the hdf5

format [14] and the h5py library [15]. This is a hierarchical binary format, where data is stored in a folder-like
structure and described with metadata. The module includes some convenience functions for storing and restoring
simulation results, as well as some general functions for navigating and writing data in an hdf5 datafile.

3.3.3. Potential energy analysis
An analysis module pysic.utility.plot has functions for exploring and plotting the potential energy surface

of the system. In practice this means one atom of the system is moved on a line or a plane and the energy or a force
component is recorded. The plotting is done in Python using the Matplotlib library [16].

3.3.4. Structural analysis
The modules pysic.utility.geometry and pysic.utility.outliers include functions for analysing atomic

structures, such as measuring distances and angles. They also include algorithms for automated search of different
atomic structures in the given system, such as grains or defects.

The module pysic.utility.outliers scores atoms in a system by how representative they are of similar atoms in the
same system. Low scores are likely to indicate defects. Two scores are calculated for each atom, the first by analysing
bond angles, the second by analysing bond distances. These can be combined to form a single score.

The score for a particular atom is given by (the logarithm of) the likelihood of observing the bond angles or
distances related to the atom. For the purpose of calculating the likelihood, these are assumed to having been generated
independently from distributions characterized by the bond angles and distances of similar atoms in the same system.

Automatic search of grains is possible using pysic.utility.outliers. Due to atoms in a grain having a regular struc-
ture, the atoms scored highest by the algorithm tend to belong to a grain, if one exists in the data. By only considering
some top-scoring proportion of the atoms in a structure, the grain areas will stand out as denser than their surroundings.
A density-based clustering algorithm can then be applied to identify the grains.

4. Examples

4.1. Interaction building

The programmable interface allows one to control and tune the interactions through Python scripting. In particular,
one can build an algorithm on top of the energy calculator in order to automate the optimization of parameters against
any desired observables. This is not limited to parameters either, since the modularity of the program also enables
changing the functional form describing the potential at script level.

Also the analysis of force field models benefits from the possibility of breaking down the potential to components.
It is possible to pick out the contribution of the different components one at a time, or in groups, and even automatically
monitor for situations where a particular part of a potential is especially weak or strong.

As an example, Pysic implements the 2nd generation charge optimized many body (COMB) potentials for silicon
and silicon oxide [17]. These potentials are designed to describe the structural and mechanical properties of vari-
ous phase polymorphs of silica, including amorphous silica. They also implement dynamic redistribution of atomic
charges. COMB potentials have been parameterized against bulk properties, which means their behaviour for defects
and clusters is not guaranteed. Indeed, the default parameterization results in charge instability and asymmetric con-
figurations for some small SinO clusters. Figure 2 shows a Si3O cluster after structural optimization using (a) the
density functional code VASP [18] and (b) the COMB potential. In the latter case, the minimum energy configuration
is found when charge is accumulated at one of the Si atoms, leading to an asymmetric configuration.

Using the analysis and scripting power of Pysic, it is fairly easy to search for minimal changes in the potential
that restore the expected symmetries. This is a complex problem. For a full reparameterization, the original set of
silica polymorphs should also be analysed, and different changes to the interactions may lead to fairly similar results.
Figure 2 (c) shown one possibility of tuning the potential involving the change of only one parameter — namely, the
attraction between Si and O has been decreased by 10 %. This change makes the symmetric configuration shown in
the figure the minimum energy structure. In the standard parameterization, it is only a local minimum 0.1 eV higher
in energy compared to the structure shown in Figure 2 (b).
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Figure 1: A HfO2 cluster consisting of several grains. The structural analysis tools have been used for characterizing individual atoms and
subsequently the atoms have been categorized using standard clustering algorithms. The resulting classes have been used for false coloring in the
image, revealing the grains.

4.2. Educational tool

The program has been used as a teaching tool on university level physics courses and summer schools. The
interface is simple enough to allow students to build a simulation without prior knowledge of the methodology such
as molecular dynamics, yet it is powerful enough to let them to explore the physics and mathematics involved. It is
possible to build simulation environments in Python on top of the interface, streamlining the process of constructing
a simulation and hiding technicalities not central to the intended learning outcomes. This makes the tool flexible
enough to be used both at an advanced level, for teaching computational physics methodology in detail, and at an
introductory physics level, where students can essentially build and run computational experiments without knowing
all the algorithms that are being used by the software.

As a computational laboratory, the program can support problem-based and inquiry-driven learning practices,
where the students are presented with open problems for which no unique answers exist. In such a context, the
students need to formulate and test their own hypotheses. If these hypotheses are to be tested via simulations, the
simulation environment must be flexible and intuitive enough to allow the students to design and create simulations
that produce information on the particular ideas they are examining. Environments built on ASE and Pysic can be
made robust yet free.
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Figure 2: Si3O cluster optimized with density functional theory (a), COMB (b) and adjusted COMB (c). The numbers represent the nominal atomic
charges, which are obtained using Bader analysis [19] for structure (a) and are a part of the potential for structures (b) and (c).
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