4,455 research outputs found

    Bringing global gyrokinetic turbulence simulations to the transport timescale using a multiscale approach

    Full text link
    The vast separation dividing the characteristic times of energy confinement and turbulence in the core of toroidal plasmas makes first-principles prediction on long timescales extremely challenging. Here we report the demonstration of a multiple-timescale method that enables coupling global gyrokinetic simulations with a transport solver to calculate the evolution of the self-consistent temperature profile. This method, which exhibits resiliency to the intrinsic fluctuations arising in turbulence simulations, holds potential for integrating nonlocal gyrokinetic turbulence simulations into predictive, whole-device models.Comment: 7 pages, 3 figure

    Acoustically-Driven Phoneme Removal That Preserves Vocal Affect Cues

    Full text link
    In this paper, we propose a method for removing linguistic information from speech for the purpose of isolating paralinguistic indicators of affect. The immediate utility of this method lies in clinical tests of sensitivity to vocal affect that are not confounded by language, which is impaired in a variety of clinical populations. The method is based on simultaneous recordings of speech audio and electroglottographic (EGG) signals. The speech audio signal is used to estimate the average vocal tract filter response and amplitude envelop. The EGG signal supplies a direct correlate of voice source activity that is mostly independent of phonetic articulation. These signals are used to create a third signal designed to capture as much paralinguistic information from the vocal production system as possible -- maximizing the retention of bioacoustic cues to affect -- while eliminating phonetic cues to verbal meaning. To evaluate the success of this method, we studied the perception of corresponding speech audio and transformed EGG signals in an affect rating experiment with online listeners. The results show a high degree of similarity in the perceived affect of matched signals, indicating that our method is effective.Comment: Submitted to the 2023 IEEE International Conference on Acoustics, Speech and Signal Processin

    The use of intravascular ultrasound imaging to improve use of inferior vena cava filters in a high-risk bariatric population

    Get PDF
    ObjectivePulmonary embolism is the leading cause of death after gastric bypass procedures for obesity, approximating 0.5% to 4%. All bariatric patients, but especially the super-obese, which have a body mass index (BMI) >50 kg/m2, are at significant risk for postoperative venous thromboembolism (VTE). Visualization and weight limitations of fluoroscopy tables exclude most bariatric and all super-obese patients from inferior vena cava (IVC) filter placement using fluoroscopy. Intravascular ultrasound (IVUS)-guided IVC filter placement is the only modality that allows these high-risk patients to have an IVC filter placed.MethodsHospital and outpatient records of the 494 patients who underwent gastric bypass procedures from January 1, 2004, to May 31, 2006, were reviewed. All patients who had concurrent IVC filter placement with the use of IVUS guidance were selected. Comorbidities, outcomes, and complications were recorded.ResultsWe identified 27 patients with mean BMI of 70 ± 3 kg/m2; of these, 25 were super-obese (BMI >50 kg/m2). Procedures included five laparoscopic and 22 open gastric bypass operations. All patients underwent concurrent IVC filter placement using IVUS guidance. In addition to super-obesity, indications for IVC filter placement included history of VTE (n = 4), known hypercoagulable state (n = 2), and profound immobility (n = 21). Mean follow up was 293 ± 40 days. Technical success rate was 96.3%. There were no catheter site complications. In one surviving patient, a nonfatal pulmonary embolism was detected by computed tomography 2 months postoperatively. Two patients died, and autopsy excluded VTE as the cause of death in both.ConclusionThis study suggests efficacy of IVUS-guided IVC filter placement in preventing mortality from pulmonary embolism in high-risk bariatric patients, including the super-obese. IVUS-guided IVC filter placement can be safely performed with an excellent success rate in all bariatric patients, including the super-obese, who otherwise would not be candidates for IVC filter placement due to the limitations imposed by their large body habitus

    Feeding of soy protein isolate to rats during pregnancy and lactation suppresses formation of aberrant crypt foci in their progeny's colons: interaction of diet with fetal alcohol exposure

    Get PDF
    Soy protein isolate (SPI) in the diet may inhibit colon tumorigenesis. We examined azoxymethane (AOM)-induced aberrant crypt foci (ACF) in male rats in relation to lifetime, pre-weaning, or post-weaning dietary exposure to SPI and also within the context of fetal alcohol exposure. Pregnant Sprague Dawley rats were fed AIN-93G diets containing casein (20%, the control diet) or SPI (20%) as the sole protein source starting on gestation day 4 (GD 4). Progeny were weaned on postnatal day (PND) 21 to the same diet as their dams and were fed this diet until termination of the experiment at PND 138. Rats received AOM on PND 89 and 96. Lifetime (GD 4 to PND 138) feeding of SPI led to reduced frequency of ACF with 4 or more crypts in the distal colon. Progeny of dams fed SPI only during pregnancy and lactation or progeny fed SPI only after weaning exhibited similarly reduced frequency of large ACF in distal colon. Number of epithelial cells, in the distal colon, undergoing apoptosis was unaffected by diet. SPI reduced weight gain and adiposity, but these were not correlated with fewer numbers of large ACF. Lifetime SPI exposure similarly inhibited development of large ACF in Sprague Dawley rats whose dams were exposed to ethanol during pregnancy. In summary, feeding of SPI to rat dams during pregnancy and lactation suppresses numbers of large ACF in their progeny, implying a long-term or permanent change elicited by the maternal diet. Moreover, results support the use of ACF as an intermediate endpoint for elucidating effects of SPI and its biochemical constituents in colon cancer prevention in rats

    Non-invasive assessment of endothelial function in children with obesity and lipid disorders

    Get PDF
    BACKGROUND: Digital tonometry is designed to non-invasively screen for endothelial dysfunction by the detection of impaired flow-induced reactive hyperaemia in the fingertip. We determined whether digital reactive hyperaemia correlated with risk factors for atherosclerosis in two groups of children at increased risk for endothelial dysfunction. METHODS: A total of 15 obese children and 23 non-obese, dyslipidaemic children, 8-21 years of age, were enrolled, and their medical histories, anthropometric measurements, carotid wall thickness by means of ultrasonography, and fasting blood samples for cardiovascular risk factors were obtained. The standard endoPAT index of digital reactive hyperaemia was modified to reflect the true peak response or the integrated response of the entire post-occlusion period. In each group, age, sex, pubertal status, carotid wall thickness, and multiple cardiovascular risk factors were tested as predictors of endothelial dysfunction. RESULTS: In the non-obese, dyslipidaemic group, but not in the obese group, both indices strongly correlated with height (r=0.55, p=0.007, by peak response) followed by weight, waist circumference, and age. In both groups, neither index of reactive hyperaemia significantly correlated with any other cardiovascular risk factor. CONCLUSIONS: Contrary to the known age-related increase in atherosclerosis, digital reactive hyperaemia increased with age and its correlates in non-obese, dyslipidaemic children and was not related to other cardiovascular risk factors in either group. The reason for the lack of this relationship with age in obese children is unknown. The age-dependent physiology of digital microvascular reactivity and the endothelium-independent factors controlling the peak hyperaemic response need further study in children with a wide age range

    Interactions between magnetohydrodynamic shear instabilities and convective flows in the solar interior

    Get PDF
    Motivated by the interface model for the solar dynamo, this paper explores the complex magnetohydrodynamic interactions between convective flows and shear-driven instabilities. Initially, we consider the dynamics of a forced shear flow across a convectively-stable polytropic layer, in the presence of a vertical magnetic field. When the imposed magnetic field is weak, the dynamics are dominated by a shear flow (Kelvin-Helmholtz type) instability. For stronger fields, a magnetic buoyancy instability is preferred. If this stably stratified shear layer lies below a convectively unstable region, these two regions can interact. Once again, when the imposed field is very weak, the dynamical effects of the magnetic field are negligible and the interactions between the shear layer and the convective layer are relatively minor. However, if the magnetic field is strong enough to favour magnetic buoyancy instabilities in the shear layer, extended magnetic flux concentrations form and rise into the convective layer. These magnetic structures have a highly disruptive effect upon the convective motions in the upper layer.Comment: 11 pages, 10 figures, accepted for publication in MNRA

    Synthesis of the elements in stars: forty years of progress

    Get PDF
    Forty years ago Burbidge, Burbidge, Fowler, and Hoyle combined what we would now call fragmentary evidence from nuclear physics, stellar evolution and the abundances of elements and isotopes in the solar system as well as a few stars into a synthesis of remarkable ingenuity. Their review provided a foundation for forty years of research in all of the aspects of low energy nuclear experiments and theory, stellar modeling over a wide range of mass and composition, and abundance studies of many hundreds of stars, many of which have shown distinct evidence of the processes suggested by B2FH. In this review we summarize progress in each of these fields with emphasis on the most recent developments

    Measuring and Correcting Wind-Induced Pointing Errors of the Green Bank Telescope Using an Optical Quadrant Detector

    Full text link
    Wind-induced pointing errors are a serious concern for large-aperture high-frequency radio telescopes. In this paper, we describe the implementation of an optical quadrant detector instrument that can detect and provide a correction signal for wind-induced pointing errors on the 100m diameter Green Bank Telescope (GBT). The instrument was calibrated using a combination of astronomical measurements and metrology. We find that the main wind-induced pointing errors on time scales of minutes are caused by the feedarm being blown along the direction of the wind vector. We also find that wind-induced structural excitation is virtually non-existent. We have implemented offline software to apply pointing corrections to the data from imaging instruments such as the MUSTANG 3.3 mm bolometer array, which can recover ~70% of sensitivity lost due to wind-induced pointing errors. We have also performed preliminary tests that show great promise for correcting these pointing errors in real-time using the telescope's subreflector servo system in combination with the quadrant detector signal.Comment: 17 pages, 11 figures; accepted for publication in PAS

    The Chandra X-ray Survey of Planetary Nebulae (ChanPlaNS): Probing Binarity, Magnetic Fields, and Wind Collisions

    Full text link
    We present an overview of the initial results from the Chandra Planetary Nebula Survey (ChanPlaNS), the first systematic (volume-limited) Chandra X-ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of ChanPlaNS targeted 21 mostly high-excitation PNe within ~1.5 kpc of Earth, yielding 4 detections of diffuse X-ray emission and 9 detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within ~1.5 kpc that have been observed to date, we find an overall X-ray detection rate of ~70%. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks formed by energetic wind collisions is detected in ~30%; five objects display both diffuse and point-like emission components. The presence of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar or Ring-like nebulae. All but one of the X-ray point sources detected at CSPNe display X-ray spectra that are harder than expected from hot (~100 kK) central star photospheres, possibly indicating a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages <~5x10^3 yr, placing firm constraints on the timescale for strong shocks due to wind interactions in PNe.Comment: 41 pages, 6 figures; submitted to the Astronomical Journa
    corecore