87 research outputs found

    Decoding the Persistence and Engagement Patterns of Doctoral Students Who Finish

    Get PDF
    Doctoral attrition rates are alarmingly high, causing concern to university leaders and students alike. These constituents seek solutions to address the troubling phenomenon of doctoral students dropping out of their programs of study. This article discusses persistence patterns of doctoral students who finish. The authors matriculated in a hybrid Ph.D. cohort program consisting of a residency requirement, coupled with online coursework. Cohort engagement, collaboration, vertical teaming, academic productivity, and networking are among the strategies discussed as effective in persistence to program completion.https://openriver.winona.edu/educationeddfacultyworks/1010/thumbnail.jp

    Regulation of ␣4␤2 Nicotinic Receptor Desensitization by Calcium and Protein Kinase C

    Get PDF
    ABSTRACT Neuronal nicotinic acetylcholine receptor (nAChR) desensitization is hypothesized to be a trigger for long-term changes in receptor number and function observed after chronic administration of nicotine at levels similar to those found in persons who use tobacco. Factors that regulate desensitization could potentially influence the outcome of long-lasting exposure to nicotine. The roles of Ca 2ϩ and protein kinase C (PKC) on desensitization of ␣4␤2 nAChRs expressed in Xenopus laevis oocytes were investigated. Nicotine-induced (300 nM; 30 min) desensitization of ␣4␤2 receptors in the presence of Ca 2ϩ developed in a biphasic manner with fast and slow exponential time constants of f ϭ 1.4 min (65% relative amplitude) and s ϭ 17 min, respectively. Recovery from desensitization was reasonably well described by a single exponential with rec ϭ 43 min. Recovery was largely eliminated after replacement of external Ca 2ϩ with Ba 2ϩ and slowed by calphostin C ( rec ϭ 48 min), an inhibitor of PKC. Conversely, the rate of recovery was enhanced by phorbol-12-myristate-13-acetate ( rec ϭ 14 min), a PKC activator, or by cyclosporin A (with rec ϭ 8 min), a phosphatase inhibitor. ␣4␤2 receptors containing a mutant ␣4 subunit that lacks a consensus PKC phosphorylation site exhibited little recovery from desensitization. Based on a twodesensitized-state cyclical model, it is proposed that after prolonged nicotine treatment, ␣4␤2 nAChRs accumulate in a "deep" desensitized state, from which recovery is very slow. We suggest that PKC-dependent phosphorylation of ␣4 subunits changes the rates governing the transitions from "deep" to "shallow" desensitized conformations and effectively increases the overall rate of recovery from desensitization. Longlasting dephosphorylation may underlie the "permanent" inactivation of ␣4␤2 receptors observed after chronic nicotine treatment

    Liquid Medication Errors and Dosing Tools: A Randomized Controlled Experiment

    Get PDF
    Poorly designed labels and packaging are key contributors to medication errors. To identify attributes of labels and dosing tools that could be improved, we examined the extent to which dosing error rates are affected by tool characteristics (ie, type, marking complexity) and discordance between units of measurement on labels and dosing tools; along with differences by health literacy and language

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure

    Evidence of gene-environment interaction for two genes on chromosome 4 and environmental tobacco smoke in controlling the risk of nonsyndromic cleft palate

    Get PDF
    Nonsyndromic cleft palate (CP) is one of the most common human birth defects and both genetic and environmental risk factors contribute to its etiology. We conducted a genome-wide association study (GWAS) using 550 CP case-parent trios ascertained in an international consortium. Stratified analysis among trios with different ancestries was performed to test for GxE interactions with common maternal exposures using conditional logistic regression models. While no single nucleotide polymorphism (SNP) achieved genome-wide significance when considered alone, markers in SLC2A9 and the neighboring WDR1 on chromosome 4p16.1 gave suggestive evidence of gene-environment interaction with environmental tobacco smoke (ETS) among 259 Asian trios when the models included a term for GxE interaction. Multiple SNPs in these two genes were associated with increased risk of nonsyndromic CP if the mother was exposed to ETS during the peri-conceptual period (3 months prior to conception through the first trimester). When maternal ETS was considered, fifteen of 135 SNPs mapping to SLC2A9 and 9 of 59 SNPs in WDR1 gave P values approaching genome-wide significance (10-6<P<10-4) in a test for GxETS interaction. SNPs rs3733585 and rs12508991 in SLC2A9 yielded P = 2.26×10-7 in a test for GxETS interaction. SNPs rs6820756 and rs7699512 in WDR1 also yielded P = 1.79×10-7 and P = 1.98×10-7 in a 1 df test for GxE interaction. Although further replication studies are critical to confirming these findings, these results illustrate how genetic associations for nonsyndromic CP can be missed if potential GxE interaction is not taken into account, and this study suggest SLC2A9 and WDR1 should be considered as candidate genes for CP. © 2014 Wu et al

    Hyper-Kamiokande Design Report

    Get PDF
    325 pages325 pagesOn the strength of a double Nobel prize winning experiment (Super)Kamiokande and an extremely successful long baseline neutrino programme, the third generation Water Cherenkov detector, Hyper-Kamiokande, is being developed by an international collaboration as a leading worldwide experiment based in Japan. The Hyper-Kamiokande detector will be hosted in the Tochibora mine, about 295 km away from the J-PARC proton accelerator research complex in Tokai, Japan. The currently existing accelerator will be steadily upgraded to reach a MW beam by the start of the experiment. A suite of near detectors will be vital to constrain the beam for neutrino oscillation measurements. A new cavern will be excavated at the Tochibora mine to host the detector. The experiment will be the largest underground water Cherenkov detector in the world and will be instrumented with new technology photosensors, faster and with higher quantum efficiency than the ones in Super-Kamiokande. The science that will be developed will be able to shape the future theoretical framework and generations of experiments. Hyper-Kamiokande will be able to measure with the highest precision the leptonic CP violation that could explain the baryon asymmetry in the Universe. The experiment also has a demonstrated excellent capability to search for proton decay, providing a significant improvement in discovery sensitivity over current searches for the proton lifetime. The atmospheric neutrinos will allow to determine the neutrino mass ordering and, together with the beam, able to precisely test the three-flavour neutrino oscillation paradigm and search for new phenomena. A strong astrophysical programme will be carried out at the experiment that will detect supernova neutrinos and will measure precisely solar neutrino oscillation

    Proposal for an Extended Run of T2K to 20×102120\times10^{21} POT

    Get PDF
    68 pages, 31 figures68 pages, 31 figures68 pages, 31 figuresRecent measurements by the T2K neutrino oscillation experiment indicate that CP violation in neutrino mixing may be observed in the future by long-baseline neutrino oscillation experiments. We propose an extension to the currently approved T2K running from 7.8\times 10^{21}~\mbox{POT} to 20\times 10^{21}~\mbox{POT}, aiming at initial observation of CP violation with 3σ\,\sigma or higher significance for the case of maximum CP violation. The program also contains a measurement of mixing parameters, θ23\theta_{23} and Δm322\Delta m^2_{32}, with a precision of 1.7^\circ or better and 1%, respectively. With accelerator and beamline upgrades, as well as analysis improvements, this program would occur before the next generation of long-baseline neutrino oscillation experiments that are expected to start operation in 2026
    corecore