1,017 research outputs found
Radiomics in Lung Cancer from Basic to Advanced: Current Status and Future Directions
Copyright © 2020 The Korean Society of Radiology.Ideally, radiomics features and radiomics signatures can be used as imaging biomarkers for diagnosis, staging, prognosis, and prediction of tumor response. Thus, the number of published radiomics studies is increasing exponentially, leading to a myriad of new radiomics-based evidence for lung cancer. Consequently, it is challenging for radiologists to keep up with the development of radiomics features and their clinical applications. In this article, we review the basics to advanced radiomics in lung cancer to guide young researchers who are eager to start exploring radiomics investigations. In addition, we also include technical issues of radiomics, because knowledge of the technical aspects of radiomics supports a well-informed interpretation of the use of radiomics in lung cancer11Nsciescopuskc
Thorn-like TiO2 nanoarrays with broad spectrum antimicrobial activity through physical puncture and photocatalytic action
To overcome the conventional limitation of TiO2 disinfection being ineffective under light-free conditions, TiO2 nanowire films (TNWs) were prepared and applied to bacterial disinfection under dark and UV illumination. TNW exhibited much higher antibacterial efficiencies against Escherichia coli (E. coli) under dark and UV illumination conditions compared to TiO2 nanoparticle film (TNP) which was almost inactive in the dark, highlighting the additional contribution of the physical interaction between bacterial membrane and NWs. Such a physical contact-based antibacterial activity was related to the NW geometry such as diameter, length, and density. The combined role of physical puncture and photocatalytic action in the mechanism underlying higher bactericidal effect of TNW was systematically examined by TEM, SEM, FTIR, XPS, and potassium ion release analyses. Moreover, TNW revealed antimicrobial activities in a broad spectrum of microorganisms including Staphylococcus aureus and MS2 bacteriophage, antibiofilm properties, and good material stability. Overall, we expect that the free-standing and antimicrobial TNW is a promising agent for water disinfection and biomedical applications in the dark and/or UV illumination.11Ysciescopu
Neutron beam test of CsI crystal for dark matter search
We have studied the response of Tl-doped and Na-doped CsI crystals to nuclear
recoils and 's below 10 keV. The response of CsI crystals to nuclear
recoil was studied with mono-energetic neutrons produced by the
H(p,n)He reaction. This was compared to the response to Compton
electrons scattered by 662 keV -ray. Pulse shape discrimination between
the response to these 's and nuclear recoils was studied, and quality
factors were estimated. The quenching factors for nuclear recoils were derived
for both CsI(Na) and CsI(Tl) crystals.Comment: 21pages, 14figures, submitted to NIM
A model for spin-polarized transport in perovskite manganite bi-crystal grain boundaries
We have studied the temperature dependence of low-field magnetoresistance and
current-voltage characteristics of a low-angle bi-crystal grain boundary
junction in perovskite manganite La_{2/3}Sr_{1/3}MnO_3 thin film. By gradually
trimming the junction we have been able to reveal the non-linear behavior of
the latter. With the use of the relation M_{GB} \propto M_{bulk}\sqrt{MR^*} we
have extracted the grain boundary magnetization. Further, we demonstrate that
the built-in potential barrier of the grain boundary can be modelled by
V_{bi}\propto M_{bulk}^2 - M_{GB}^2. Thus our model connects the
magnetoresistance with the potential barrier at the grain boundary region. The
results indicate that the band-bending at the grain boundary interface has a
magnetic origin.Comment: 9 pages, 5 figure
Corepressor/coactivator paradox: potential constitutive coactivation by corepressor splice variants
The functional consequences of the interaction of transcriptional coregulators with the human thyroid hormone receptor (TR) in mammalian cells are complex. We have used the yeast, Saccharomyces cerevisiae, which lack endogenous nuclear receptors (NRs) and NR coregulators, as a model to decipher mechanisms regulating transcriptional activation by TR. In effect, this system allows the reconstitution of TR mediated transcription complexes by the expression of specific combinations of mammalian proteins in yeast. In this yeast system, human adenovirus 5 early region 1A (E1A), a natural N-CoR splice variant (N-CoR(I)) or an artificial N-CoR truncation (N-CoR(C)) coactivate unliganded TRs and these effects are inhibited by thyroid hormone (TH). E1A contains a short peptide sequence that resembles known corepressor-NR interaction motifs (CoRNR box motif, CBM), and this motif is required for TR binding and coactivation. N-CoR(I) and N-CoR(C) contain three CBMs, but only the C-terminal CBM1 is critical for coactivation. These observations in a yeast model system suggest that E1A and N-CoR(I) are naturally occurring TR coactivators that bind in the typical corepressor mode. These findings also raise the possibility that alternative splicing events which form corepressor proteins containing only C-terminal CBM motifs could represent a novel mechanism in mammalian cells for regulating constitutive transcriptional activation by TRs
Measurement of the Intrinsic Radiopurity of Cs-137/U-235/U-238/Th-232 in CsI(Tl) Crystal Scintillators
The inorganic crystal scintillator CsI(Tl) has been used for low energy
neutrino and Dark Matter experiments, where the intrinsic radiopurity is an
issue of major importance. Low-background data were taken with a CsI(Tl)
crystal array at the Kuo-Sheng Reactor Neutrino Laboratory. The pulse shape
discrimination capabilities of the crystal, as well as the temporal and spatial
correlations of the events, provide powerful means of measuring the intrinsic
radiopurity of Cs-137 as well as the U-235, U-238 and Th-232 series. The event
selection algorithms are described, with which the decay half-lives of Po-218,
Po-214, Rn-220, Po-216 and Po-212 were derived. The measurements of the
contamination levels, their concentration gradients with the crystal growth
axis, and the uniformity among different crystal samples, are reported. The
radiopurity in the U-238 and Th-232 series are comparable to those of the best
reported in other crystal scintillators. Significant improvements in
measurement sensitivities were achieved, similar to those from dedicated
massive liquid scintillator detector. This analysis also provides in situ
measurements of the detector performance parameters, such as spatial
resolution, quenching factors, and data acquisition dead time.Comment: 28 pages, 12 figure
Infinite spin limit of semiclassical string states
Motivated by recent works of Hofman and Maldacena and Dorey we consider a
special infinite spin limit of semiclassical spinning string states in AdS5 x
S5. We discuss examples of known folded and circular 2-spin string solutions
and demonstrate explicitly that the 1-loop superstring correction to the
classical expression for the energy vanishes in the limit when one of the spins
is much larger that the other. We also give a general discussion of this limit
at the level of integral equations describing finite gap solutions of the
string sigma model and argue that the corresponding asymptotic form of the
string and gauge Bethe equations is the same.Comment: 38 pages, 3 figures; v2: comments on derivation of bound states of
magnons from discrete Bethe equations added in section 4 and appendix C,
references added, Imperial-TP-AT-6-4, HUTP-06/A002
Grain boundary effects on magnetotransport in bi-epitaxial films of LaSrMnO
The low field magnetotransport of LaSrMnO (LSMO) films
grown on SrTiO substrates has been investigated. A high qualtity LSMO film
exhibits anisotropic magnetoresistance (AMR) and a peak in the
magnetoresistance close to the Curie temperature of LSMO. Bi-epitaxial films
prepared using a seed layer of MgO and a buffer layer of CeO display a
resistance dominated by grain boundaries. One film was prepared with seed and
buffer layers intact, while a second sample was prepared as a 2D square array
of grain boundaries. These films exhibit i) a low temperature tail in the low
field magnetoresistance; ii) a magnetoconductance with a constant high field
slope; and iii) a comparably large AMR effect. A model based on a two-step
tunneling process, including spin-flip tunneling, is discussed and shown to be
consistent with the experimental findings of the bi-epitaxial films.Comment: REVTeX style; 14 pages, 9 figures. Figure 1 included in jpeg format
(zdf1.jpg); the eps was huge. Accepted to Phys. Rev.
Work function changes in the double layered manganite La1.2Sr1.8Mn2O7
We have investigated the behaviour of the work function of La1.2Sr1.8Mn2O7 as
a function of temperature by means of photoemission. We found a decrease of 55
+/- 10 meV in going from 60 K to just above the Curie temperature (125 K) of
the sample. Above T_C the work function appears to be roughly constant. Our
results are exactly opposite to the work function changes calculated from the
double-exchange model by Furukawa, but are consistent with other measurements.
The disagreement with double-exchange can be explained using a general
thermodynamic relation valid for second order transitions and including the
extra processes involved in the manganites besides double-exchange interaction.Comment: 6 pages, 4 figures included in tex
- …