94,856 research outputs found

    Scaling in the crossover from random to correlated growth

    Full text link
    In systems where deposition rates are high compared to diffusion, desorption and other mechanisms that generate correlations, a crossover from random to correlated growth of surface roughness is expected at a characteristic time t_0. This crossover is analyzed in lattice models via scaling arguments, with support from simulation results presented here and in other authors works. We argue that the amplitudes of the saturation roughness and of the saturation time scale as {t_0}^{1/2} and t_0, respectively. For models with lateral aggregation, which typically are in the Kardar-Parisi-Zhang (KPZ) class, we show that t_0 ~ 1/p, where p is the probability of the correlated aggregation mechanism to take place. However, t_0 ~ 1/p^2 is obtained in solid-on-solid models with single particle deposition attempts. This group includes models in various universality classes, with numerical examples being provided in the Edwards-Wilkinson (EW), KPZ and Villain-Lai-Das Sarma (nonlinear molecular-beam epitaxy) classes. Most applications are for two-component models in which random deposition, with probability 1-p, competes with a correlated aggregation process with probability p. However, our approach can be extended to other systems with the same crossover, such as the generalized restricted solid-on-solid model with maximum height difference S, for large S. Moreover, the scaling approach applies to all dimensions. In the particular case of one-dimensional KPZ processes with this crossover, we show that t_0 ~ nu^{-1} and nu ~ lambda^{2/3}, where nu and lambda are the coefficients of the linear and nonlinear terms of the associated KPZ equations. The applicability of previous results on models in the EW and KPZ classes is discussed.Comment: 14 pages + 5 figures, minor changes, version accepted in Phys. Rev.

    Presure-Induced Superconducting State of Antiferromagnetic CaFe2_2As2_2

    Full text link
    The antiferromagnet CaFe2_2As2_2 does not become superconducting when subject to ideal hydrostatic pressure conditions, where crystallographic and magnetic states also are well defined. By measuring electrical resistivity and magnetic susceptibility under quasi-hydrostatic pressure, however, we find that a substantial volume fraction of the sample is superconducting in a narrow pressure range where collapsed tetragonal and orthorhombic structures coexist. At higher pressures, the collapsed tetragonal structure is stabilized, with the boundary between this structure and the phase of coexisting structures strongly dependent on pressure history. Fluctuations in magnetic degrees of freedom in the phase of coexisting structures appear to be important for superconductivity.Comment: revised (6 pages, 5 figures) - includes additional experimental result

    Comment on the ``ξ\theta-term renormalization in the (2+1)-dimensional CPN−1CP^{N-1} model with ξ\theta term''

    Full text link
    It is found that the recently published first coefficient of nonzero ÎČ\beta-function for the Chern-Simons term in the 1/N1/N expansion of the CPN−1CP^{N-1} model is untrue numerically. The correct result is given. The main conclusions of Park's paper are not changed.Comment: 3 pages, LATE

    Academic Support at Leeds Metropolitan Library

    Get PDF
    Leeds Metropolitan’s Library Academic Support Stream is made up of Academic Librarians and Information Services Librarians who provide academic support to the university’s six faculties. The team use innovative methods of working together to engage students and enhance their experience. The team only formed a year ago so this is a good time to reflect on our success so far. The library service at Leeds Met is continually developing and offers new challenges and opportunities for staff providing library academic support. Innovation has even become part of our new name – ‘Libraries and Learning Innovation’. We still offer all the traditions types of library academic support, but there is an increasing emphasis on finding innovative ways of supporting students and publicising what we can offer. This year the Library Academic Support Stream won a University Attitude Character and Talents Award for Future Focus

    Dark matter haloes in modified gravity and dark energy: interaction rate, small-, and large-scale alignment

    Full text link
    We study the properties of dark matter haloes in a wide range of modified gravity models, namely, f(R)f(R), DGP, and interacting dark energy models. We study the effects of modified gravity and dark energy on the internal properties of haloes, such as the spin and the structural parameters. We find that f(R)f(R) gravity enhance the median value of the Bullock spin parameter, but could not detect such effects for DGP and coupled dark energy. f(R)f(R) also yields a lower median sphericity and oblateness, while coupled dark energy has the opposite effect. However, these effects are very small. We then study the interaction rate of haloes in different gravity, and find that only strongly coupled dark energy models enhance the interaction rate. We then quantify the enhancement of the alignment of the spins of interacting halo pairs by modified gravity. Finally, we study the alignment of the major axes of haloes with the large-scale structures. The alignment of the spins of interacting pairs of haloes in DGP and coupled dark energy models show no discrepancy with GR, while f(R)f(R) shows a weaker alignment. Strongly coupled dark energy shows a stronger alignment of the halo shape with the large-scale structures.Comment: 11 pages, 6 figures, MNRAS Accepte

    Lattice effects on the spin dynamics in antiferromagnetic molecular rings

    Full text link
    We investigate spin dynamics in antiferromagnetic (AF) molecular rings at finite temperature in the presence of spin-phonon (s-p) interaction. We derive a general expression for the spin susceptibility in the weak s-p coupling limit and then we focus on the low-frequency behavior, in order to discuss a possible microscopic mechanism for nuclear relaxation in this class of magnetic materials. To lowest order in a perturbative expansion, we find that the susceptibility takes a Lorentzian profile and all spin operators (SxS^x, Sy,SzS^y, S^z) contribute to spin dynamics at wave vectors q≠0q\ne 0. Spin anisotropies and local s-p coupling play a key role in the proposed mechanism. Our results prove that small changes in the spatial symmetry of the ring induce qualitative changes in the spin dynamics at the nuclear frequency, providing a novel mechanism for nuclear relaxation. Possible experiments are proposed.Comment: 4 pages, 2 figures. to appear in PR

    Does Scientific Progress Consist in Increasing Knowledge or Understanding?

    Get PDF
    Bird argues that scientific progress consists in increasing knowledge. DellsĂ©n objects that increasing knowledge is neither necessary nor sufficient for scientific progress, and argues that scientific progress rather consists in increasing understanding. DellsĂ©n also contends that unlike Bird’s view, his view can account for the scientific practices of using idealizations and of choosing simple theories over complex ones. I argue that DellsĂ©n’s criticisms against Bird’s view fail, and that increasing understanding cannot account for scientific progress, if acceptance, as opposed to belief, is required for scientific understanding

    The Second Virial Coefficient of Spin-1/2 Interacting Anyon System

    Full text link
    Evaluating the propagator by the usual time-sliced manner, we use it to compute the second virial coefficient of an anyon gas interacting through the repulsive potential of the form g/r2(g>0)g/r^2 (g > 0). All the cusps for the unpolarized spin-1/2 as well as spinless cases disappear in the ω→0\omega \to 0 limit, where ω\omega is a frequency of harmonic oscillator which is introduced as a regularization method. As gg approaches to zero, the result reduces to the noninteracting hard-core limit.Comment: 9 pages, 2 figs include
    • 

    corecore