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Abstract

This paper studies quantile regression in an autoregressive dynamic framework
with exogenous stationary covariates. Hence, we develop a quantile autoregressive
distributed lag model (QADL). We show that these estimators are consistent and
asymptotically normal. Inference based on Wald and Kolmogorov-Smirnov tests for
general linear restrictions is proposed. An extensive Monte Carlo simulation is con-
ducted to evaluate the properties of the estimators. We demonstrate the potential
of the QADL model with an application to house price returns in the United King-
dom. The results show that house price returns present a heterogeneous autoregressive
behavior across the quantiles. The real GDP growth and interest rates also have an
asymmetric impact on house prices variations.
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1 Introduction

Lags are present in econometrics for several reasons. Among these: price stickiness, psycho-

logical inertia (habit), permanent versus transitory shocks, adjustment costs, delays in im-

plementing new technologies, etc. Modeling dynamic economic behavior has been a concern

in econometrics, and constant-coefficient linear time series models have played an enormous

role, see for instance Hendry and Richard (1982, 1983), Hendry, Pagan, and Sargan (1984)

and Kiviet and Dufour (1997).

However, using constant-coefficient models as representations of economic time series

may be insufficiently flexible. These models ignore the effects that a succession of small

and varied macroeconomic shocks may have on the structure of dynamic economic models,

particularly for highly aggregated data series. Moreover, these models cannot appropriately

account for the presence of asymmetric dynamic responses. Of particular interest are the

asymmetric business cycle dynamics over different quantiles of the economic variables. For

instance, Beaudry and Koop (1993) show that positive shocks to the U.S. GDP are more

persistent than negative shocks. Poterba (1991) and Capozza, Hendershott, Mack, and

Mayer (2002) among others, present evidence on the asymmetric responses of house prices

to income shocks. The occurrence of these asymmetries may therefore call into question

the usefulness of models with time invariant structures as means of modeling such series.

Quantile regression is a statistical method for estimating models of conditional quantile

functions, which offers a systematic strategy for examining how covariates influence the

location, scale, and shape of the entire response distribution, therefore exposing a variety of

heterogeneity in response dynamics.

There is a growing literature about estimation of quantile regression models for time

series. Koenker and Zhao (1996) extend quantile regression to linear ARCH models and
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studied a model with a pure location-shift. Engle and Manganelli (2004) propose a quantile

autoregressive framework to model value-at-risk where the quantiles themselves follow an

autoregressive process. Koenker and Xiao (2006a) consider quantile autoregression models

in which the autoregressive coefficients can be expressed as monotone functions of a single,

scalar random variable. Finally, Xiao (2006) studies quantile regression with cointegrated

time series.

The purpose of this paper is to generalize the quantile autoregressive framework, proposed

by Koenker and Xiao (2006a), by allowing for exogenous stationary covariates and to provide

an application to illustrate the usefulness of the new model to study asymmetric behavior in

time series. We develop a quantile autoregressive distributed lag (QADL) model. The QADL

model can deliver important insights about asymmetric dynamics, such as heterogeneous

adjustments in time series models where controlling for lagged regressors and exogenous

covariates is important. The approach proposed in this paper is different from that of

Engle and Manganelli (2004) because we use quantile regression in the standard linear time

series context, modeling the conditional quantile function as linear and depending on past

values of the dependent variable, instead of modeling the quantile functions themselves as an

autoregressive process. This reduces the computational burden substantially. Moreover, the

QADL model allows for some forms of explosive behavior in some quantiles while maintaining

stationarity of the process, as long as certain stationarity conditions are satisfied on the whole

distribution, while Engle and Manganelli (2004) exclude this case. It is important to note

that we do not consider the Xiao (2006) case where the variables are cointegrated, but rather

we consider an exogenous set of stationary covariates.

We illustrate the QADL model with an application to quarterly house price returns data

in the United Kingdom (UK). House prices volatility has claimed unprecedented importance

and there is a growing literature on this topic (for instance Muellbauer and Murphy, 1997;
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Ortalo-Magné and Rady, 1999, 2006; Rosenthal, 2006). We argue that quantile regression

can be used to describe the asymmetric responses of house prices returns to income and

interest rates shocks. We interpret the conditional quantile functions as different phases

of the house price cycle. The results show that house price returns have an asymmetric

autoregressive behavior, and that real GDP growth and interest rates have an asymmetric

impact on house prices returns along the quantiles. In addition, the results suggest that

unit root behavior is present only in the high extreme quantiles. Thus, the model seems

to show global stationarity with some persistence in unusually high returns. The inclusion

of stationary covariates reduces the asymmetric autoregressive responses but maintains the

persistence in the high quantiles. The interest rates have a negative impact on house prices

returns, mostly significant for low quantiles. This can be interpreted as the fact that the

interest rates have an effect on stimulating the demand in the real estate market when returns

are low, but it does not deter house prices booms. In addition, there is evidence that the

impact of GDP on house prices presents an asymmetric impact and it is stronger for low and

high quantiles. For low quantiles, this is interpreted as the fact that GDP growth reactivates

the real estate market when returns are low, while it might be contributing to house prices’

busts (as that in the early 1990’s where a recession was accompanied by a significant decline

in house prices). Moreover, it contributes to sustaining house prices booms. In other words,

periods of unusually high returns are very responsive to GDP growth. In fact, there is

some evidence of overshooting for extreme high quantiles. In this case, the conditional mean

may be a misleading estimator in periods of low and high returns, which are those when

policymakers are more keen to intervene or to predict future behavior.

It is important to note that quantile autoregression in time series has a different interpre-

tation than that of quantile regression in cross-sectional data. In general, quantile regression

shows how a given quantile of the conditional distribution of y depends on the covariates x.
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In the cross-sectional case, this can be interpreted as the different effects that covariates exert

on a given outcome for individuals on that corresponding quantile of the conditional distri-

bution. In a time series context, however, we estimate the conditional quantile function of a

particular variable along time, for instance aggregated variables such as GDP and consump-

tion or index numbers. In the illustration presented in the paper we analyze price returns

and we may interpret the conditional quantiles function at a given time as different phases of

business cycles, where low and high quantiles of the conditional distribution of price returns

corresponds to periods of declining and increasing prices respectively. This interpretation

might also be used for output gap, consumption growth or value-at-risk applications.

The rest of the paper is organized as follows. Section 2 presents the model and assump-

tions. In Section 3 we describe the estimation and asymptotic properties of the estimators.

In particular, we show that the QADL estimator is consistent and asymptotically normal.

Section 4 develops the inference procedure and proposes a Wald type test for general linear

hypotheses and a Kolmogorov-Smirnov test for linear hypothesis over a range of quantiles.

Section 5 presents Monte Carlo evidence. In Section 6 we illustrate the new approach by

applying it to the house price returns dataset. Finally, Section 7 concludes the paper.

2 The Model and Assumptions

The autoregressive-distributed lag model is described by the following equation

yt = µ+

p∑
j=1

αjyt−j +

q∑
l=0

x′t−lθl + εt; t = 1, ..., n (1)

where yt is the response variable, yt−j is the lag of the response variable, xt is a dim(x)-

dimensional vector of covariates and εt is assumed to be white noise.1 The main aim of this

type of model is to emphasize alternative short-run dynamic structures. In addition, this

1We assume, for convenience, that each variable in xt have the same lag truncation, q. The case of
different lag truncation for each variable is immediate.
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class of models also provides important long-run results that are of particular interest for

inference about the validity of a proposed economic theory. Nevertheless, the least squares

based models might be insufficient to describe heterogeneity in the impact of the shocks in a

given time series. Quantile autoregressive distributed lag model may be viewed as a model

which complements the model described in equation (1).

As in Koenker and Xiao (2006a), let {Ut} be a sequence of i.i.d. standard uniform random

variables, and consider the following autoregressive-distributed lag process

yt = µ (Ut) +

p∑
j=1

αj (Ut) yt−j +

q∑
l=0

x′t−lθl (Ut) (2)

where α and θ are unknown functions [0,1]→ R that we want to estimate. Given that the

right hand side of (2) is monotone increasing on Ut, it follows that the τ -th conditional

quantile function of yt can be written as

Qyt (τ |=t) = µ (τ) +

p∑
j=1

αj (τ) yt−j +

q∑
l=0

x′t−qθl (τ) (3)

where =t is the σ-field generated by {ys, xs, s ≤ t}.2 Implicitly in the formulation of model

(3) is the requirement that Qyt(τ |=t) is monotone increasing in τ for all =t. A more compact

notation to describe model (3) is

Qyt (τ |=t) = z′tβ(τ)

where zt = (1, yt−1, ..., yt−p, xt, ..., xt−q)
′ and β(τ) = (µ (τ) , α1 (τ) , ..., αp (τ) , θ′0 (τ) , ..., θ′q (τ))′.

It is important to emphasize that monotonicity of the conditional quantile functions im-

poses some discipline on the forms taken by the coefficients. This essentially requires that

2The transition from (2) to (3) is an immediate consequence of the fact that for any monotone increasing
function g and standard uniform random variable, U , we have

Qg(U)(τ) = g(QU (τ)) = g(τ),

where QU (τ) = τ is the quantile function of U .
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the function Qyt(τ |=t) is monotone in τ in some relevant region of =t-space. In some circum-

stances, this necessitates restricting the domain of the dependent variables; in other cases,

when the coordinates of the dependent variables are themselves functionally dependent,

monotonicity may hold globally. The estimated conditional quantile function

Q̂yt (τ |=t) = z′tβ̂(τ) (4)

is ensured to be monotone in τ at zt = z̄, as noted in Koenker and Xiao (2006a). However,

monotonicity at zt = z̄ does not guarantee that Q̂yt (τ |=t) will be monotone in τ for other

values of z. Furthermore, once we are using a liner model, there must be crossing sufficiently

far away from z̄.3 It may be that such crossing occurs outside the convex hull of the z

observations, in which case the estimated model may be viewed as an adequate approximation

within this region. But it is not unusual to find that the crossing has occurred in this region

as well. As discussed in Koenker and Xiao (2006a), one can find a linear reparametrization

of the model that does exhibit comonotonicity over some relevant region of covariate space.

It is easy to check whether Q̂yt (τ |=t) is monotone at particular z points. In order

to verify monotonicity for a given z, one may compute equation (4) for several quantiles,

evaluated at such z, and plot it against the sequence of τ ’s. If there is a significant number

of observed points at which this condition is violated, then this can be taken as evidence

of model misspecification. Failure of the monotonicity condition might also imply that the

conditional quantile functions are not linear. In this paper, we assume that monotonicity of

Qyt(τ |=t) in τ , for some relevant region of =t-space, holds.4

The quantile autoregressive distributed-lag of orders p and q (QADL(p, q)) model (3) can

3Neocleous and Portnoy (2008) show that if one considers grids for τ ∈ [0, 1] with spacing δn

wider than O(1/(n log(n))) for the full quantile regression process, and satisfying lim sup δnnη > 0 and
lim inf δnn1/2/ log n > 0 for some η > 0, then with probability tending to one, Q̂yt

(τ |=t) is strictly mono-
tone for ε ≤ τ ≤ 1− ε and bounded domain for z.

4We refer the reader to Koenker and Xiao (2006a), Koenker and Xiao (2006b), and Koenker (2005) for
more details about monotonicity in quantile regression.
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be written in more conventional random-coefficient notation as

yt = µ0 +

p∑
j=1

αj,tyt−j +

q∑
l=0

x′t−lθl,t + ut, (5)

where µ0 = Eµ(Ut), ut = µ(Ut) − µ0, αj,t = αj(Ut) and θl,t = θl(Ut) for j = 1, 2, · · · , p and

l = 0, 1, · · · , q. Thus {Ut} is an independent and identically distributed (i.i.d.) sequence of

random variables with distribution function F (·) = µ−1(·+µ0) and the αj,t and θl,t coefficients

are functions of the ut innovation random variable.

In model (5) the choice of p and q are important. In order to select appropriated models

we suggest the use of BIC criteria, adapted to QADL along the lines suggested by Machado

(1993), which is based on the Asymmetric Laplace Distribution. At the median it uses the

criterion

BIC = n log σ̂ +
1 + p+ (1 + q)× dim(x)

2
log n

where σ̂ = n−1
∑
|yt − z′tβ̂(1/2)|. For other quantiles, the obvious asymmetric modification

of this expression can be used. In the example given in this paper we select the number

of lags based only on the median criterion, in order to have a comparable regression model

across quantiles. But, it is possible that there are applications in which this is not desirable.

For stationarity and asymptotic analysis, we introduce the following assumptions.

A.1: {ut} are iid random variables with mean 0 and variance σ2 <∞.

A.2: The distribution function of ut, F , has a continuous Lebesgue density, f , with 0 <

f(u) <∞ on U = {u : 0 < F (u) < 1}.

A.3: LetE(At⊗At) = ΩA whereAt =

[
Ap−1,t αp,t

Ip−1 0(p−1)×1

]
andAp−1,t = [α1,t, α2,t, · · · , αp−1,t].

Then, the eigenvalues of ΩA have moduli less than unity.

A.4: LetE(Θt⊗Θt) = ΩΘ, where Θt =

[
Θq−1,t θq,t

0(p−1)×(q−1) 0(p−1)×1

]
and Θq−1,t = [θ0,t, θ1,t, · · · , θq−1,t].

{xt} is a weakly stationary sequence, and ΩΘ exists;
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A.5: τ ∈ T = [c, 1− c] with c ∈ (0, 1/2). For all τ , (α(τ), θ′(τ)) ∈ int A × G , and A × G

is compact and convex; and maxt ‖xt‖ = O(
√
T ); maxt ‖yt‖ = O(

√
T );

A.6: Denote the conditional distribution function Pr[yt < ·|=t] as Ft−1(·) and its derivative

as ft−1(·), ft−1 is uniformly integrable on U .

A.1, A.2, A.5 and A.6 are standard assumptions in the quantile regression framework. A.3

deserves some scrutiny. It restricts the non-stationary behavior of the dependent variable.

However, as shown in Theorem 1, the process may allow for some forms of explosive behavior

in some quantiles while maintaining stationarity in the quantile process. Assumption A.4

restricts the exogenous covariates to be stationary.

Under some regularity conditions, the next theorem derives the stochastic behavior of yt

and it will facilitate the asymptotic analysis in the next section.

Theorem 1 Under assumptions A.1 - A.4, the time series yt given by (5) is covariance

stationary.

3 Estimation of QADL

In this section we describe the estimation method and study the asymptotic properties of

these estimators. The estimation procedure is based on standard linear quantile regression.

Thus, estimation of the quantile autoregressive distributed lag model (3) involves solving the

following problem

min
β∈<1+p+(1+q)×dim(x)

n∑
t=1

ρτ (yt − z′tβ) (6)

where ρτ (u) = u(τ − I(u < 0)), as in Koenker and Bassett (1978). We are mostly concerned

with the asymptotic properties of the β̂(τ) coefficients in (6). First we state consistency of
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the estimators and later asymptotic normality. The proofs of the theorems appear in the

Appendix.

Under the assumptions discussed above, the estimator β̂(τ) is consistent. The following

theorem formalizes the result.

Theorem 2 Under Assumptions A1-A6,

β̂(τ)
p→ β(τ).

The consistency of the estimators is achieved by the argmax theorem in van der Vaart and

Wellner (1996).

Given the estimates, β̂(τ), the τ−th conditional quantile function of yt, conditional of zt,

can be estimated by

Q̂yt(τ |zt) = z′tβ̂(τ).

In addition, given a family of estimated conditional quantile functions, the conditional density

of yt at various values of the conditioning covariate can be estimated by the difference

quotients,

f̂yt(τ |zt) = (τi − τi−1)/
(
Q̂yt(τi|zt)− Q̂yt(τi−1|zt)

)
,

for some appropriately chosen sequence of τ ′s.

Now we move our attention to the asymptotic normality of the estimators. In order to

derive the limiting distribution of the estimators define v̂ = n1/2(β̂(τ) − β(τ)), and write

ρτ (yt − β̂(τ)′zt) as ρτ (utτ − (n−1/2v̂)′zt) where utτ = yt − z′tβ(τ). Minimization of (6) is

equivalent to the following problem:

min
v

n∑
t=1

[ρτ (utτ − (n−1/2v)′zt)− ρτ (utτ )]. (7)

Note that v̂ is a minimizer of Hn(v) =
∑n

t=1

[
ρτ (utτ − (n−1/2v)′zt)− ρτ (utτ )

]
. The objective

function Hn(v) is a convex random function. Knight (1989, 1991) and Pollard (1991) show
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that if the finite-dimensional distributions of Hn(·) converge weakly to those of H(·) and

H(·) has a unique minimum, the convexity of Hn(·) implies that v̂ converges in distribution

to the minimizer of H(·). Denoting ψτ (u) = τ − I(u < 0) for u 6= 0, following the approach

of Knight (1989) it can be shown that the limiting distribution of v̂ is determined by the

limiting behavior of the function Hn(v). Using Knight’s identity,

ρτ (u− v)− ρτ (u) = −vψτ (u) + (u− v){I(0 > u > v)− I(0 < u < v)}

= −vψτ (u) +

∫ v

0

{I(u ≤ s)− I(u < 0)}ds

the objective function for minimization of problem (7) can be rewritten as

Hn(v) =
n∑

t=1

[ρτ (utτ − (n−1/2v)′zt)− ρτ (utτ )]

= −
n∑

t=1

v′n−1/2ztψτ (utτ ) +
n∑

t=1

∫ (n−1/2v)′zt

0

{I(utτ ≤ s)− I(utτ < 0)}ds.

Therefore, in order to derive the asymptotic results for the limiting distribution of

n1/2(β̂(τ)− β(τ)) we need to study the convergence of the two terms of Hn(v) in the above

equation, n−1/2
∑n

t=1 v
′ztψτ (utτ ) and

∑n
t=1

∫ (n−1/2v)′zt

0
{I(utτ ≤ s)−I(utτ < 0)}ds. Thus, once

we show that Hn(·) converge weakly to H(·) we just need to find the minimizer of H(·), and

v̂ converges in distribution to that minimizer.

Define the following elements: E(yt) = µy; E(xt) = µx; E(ytyt−j) = γyj
; E(xtxt−j) = γxj

;

E(ytxt−j) = γyxj
; Ω0 = E(ztz

′
t) = limn−1

∑n
t=1 ztz

′
t then

Ω0 =

 1 µy µx

µy Ωy Ωyx

µx Ωyx Ωx

 ,
Ωy =

 γy0 · · · γyp−1

...
. . .

...
γyp−1 · · · γy0

 , Ωx =

 γx0 · · · γxq

...
. . .

...
γxq · · · γx0

 , Ωyx =

 γyx0 · · · γyxp+q

...
. . .

...
γyxp+q · · · γyx0

 .
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In addition, let Ω1(τ) = limn−1
∑n

t=1 ft−1[F
−1
t−1(τ)]ztz

′
t and Σ(τ) = Ω1(τ)

−1Ω0Ω1(τ)
−1.

We will discuss estimation of Σ(τ) in the next section. The limiting distribution of the

quantile autoregressive distributed lag estimator is given in Theorem 3. The proof of the

theorem is given in the Appendix.

Theorem 3 Under Assumptions A1-A6,

Σ(τ)−1/2
√
n

(
β̂(τ)− β(τ)

)
⇒ Bk(τ)

where Bk(τ) represents a k-dimensional Brownian Bridge where k = 1+p+(1+q)×dim(x).

By definition, for any fixed τ , Bk(τ) is N(0, τ(1 − τ)Ik). Therefore, for the important

case of estimation of a fixed quantile τ , we state the result in the following corollary.

Corollary 1 Under Assumptions A1-A6, for a fixed τ ,

√
n

(
β̂(τ)− β(τ)

)
⇒ N(0, τ(1− τ)Σ(τ)),

Remark 1 In the special case of fixed quantile τ , and constant coefficients, Ω1(τ) = f [F−1(τ)]Ω0,

where f(·) and F (·) are the density and distribution functions of ut, respectively. Thus,

Corollary 1 simplifies to

f [F−1(τ)]Ω
−1/2
0

√
n

(
β̂(τ)− β(τ)

)
⇒ N(0, τ(1− τ)Ik).

4 Inference on QADL

In this section, we turn our attention to inference in the quantile autoregression distributed

lag model (QADL), and suggest a Wald type test for general linear hypotheses, and a

Kolmogorov-Smirnov test for linear hypothesis over a range of quantiles τ ∈ T . In the

independent and identically distributed setup the conditional quantile functions of the re-

sponse variable, given the covariates, are all parallel, implying that covariates effects shift
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the location of the response distribution but do not change the scale or shape. However,

slopes estimates often vary across quantiles implying that it is important to test for equality

of slopes across quantiles. Wald tests designed for this purpose were suggested by Koenker

and Bassett (1982a), Koenker and Bassett (1982b), and Koenker and Machado (1999). It is

possible to formulate a wide variety of tests using variants of the proposed Wald test, from

simple tests on a single quantile regression coefficient to joint tests involving many covariates

and distinct quantiles at the same time.

General hypotheses on the vector β(τ) can be accommodated by Wald-type tests. The

Wald process and associated limiting theory provide a natural foundation for the hypothesis

Rβ(τ) = r, when r is known. Here R is a k × (1 + p+ (1 + q)dim(x)) matrix with rank k

and r is a k-dimensional vector.

Under the null hypothesis H0 : Rβ(τ) = r, conditions A1-A6, we have

Vn(τ) =
√
n[RΣ(τ)R′]−1/2(Rβ̂(τ)− r) ⇒ Bk(τ), (8)

where Bk(τ) represents a k-dimensional standard Brownian Bridge. For any fixed τ , Bk(τ)

is N(0, τ(1− τ)Ik). The normalized Euclidean norm of Bk(τ)

Qk(τ) = ‖Bk(τ)‖/
√
τ(1− τ)

is generally referred to as a Kiefer process of order k. Moreover, for given τ , the regression

Wald process can be constructed as

Wn(τ) =
n(Rβ̂(τ)− r)′[RΩ̂1(τ)

−1Ω̂0Ω̂1(τ)
−1R′]−1(Rβ̂(τ)− r)

τ(1− τ)
(9)

where Ω̂1(τ) and Ω̂0 are consistent estimators of Ω1(τ) and Ω0, respectively.

Under H0, the statistic Wn is asymptotically χ2
k with k-degrees of freedom. The limiting

distribution of the test is summarized in the following theorem:
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Theorem 4 (Wald Test Inference). Under H0 : Rβ(τ) = r, and conditions A1-A6, for fixed

τ

Wn(τ) ⇒ χ2
k.

Proof. The proof is simple and it follows from observing that for any fixed τ , by Corollary

1

√
n(β̂(τ)− β(τ)) ⇒ N(0, τ(1− τ)Σ(τ))

under the null hypothesis,

√
n(Rβ̂(τ)− r) ⇒ N(0, τ(1− τ)RΣ(τ)R′)

since Σ̂(τ) is a consistent estimator of Σ(τ), by Slutsky theorem

Wn(τ) =
n(Rβ̂(τ)− r)′[RΣ̂(τ)R′]−1(Rβ̂(τ)− r)

τ(1− τ)
⇒ χ2

k.

In order to implement the test it is necessary to estimate Σ(τ) consistently. There are

several consistent estimators available. Since Ω0 involves no nuisance parameter it can easily

be estimated as

Ω̂0(τ) =
1

n

n∑
t=1

ztz
′
t.

Two approaches to the estimation of the matrix Ω1(τ) will be described. First, we describe

the approach proposed by Bassett and Koenker (1982) and Hendricks and Koenker (1991).

Provided that the τ conditional quantile function of y|z is linear, then for hn → 0 we can

consistently estimate the parameters of the τ±hn conditional quantile function by β̂(τ±hn),

and the density ft(ξt) can thus be estimated by the difference quotient

f̂t(ξt) =
2hn

z′t(β̂(τ + hn)− β̂(τ − hn))
(10)
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where hn is a bandwidth which tends to zero as n → ∞, and ξt = z′tβ(τ). Substituting

this estimator in the expression for Ω1(τ) yields the feasible estimator for the asymptotic

covariance matrix. Following Powell (1986), the second approach of the estimator of Ω1(τ)

takes the form

Ω̂1(τ) =
1

2nhn

n∑
t=1

I(|ût(τ)| ≤ hn)ztz
′
t,

where ût(τ) = yt − z′tβ̂(τ) and hn is an appropriately chosen bandwidth, with hn → 0 and

nh2
n →∞. The consistency of these estimators is standard and will not be discussed in this

paper. For the Monte Carlo experiments and the application we only consider the second

method.

More general hypotheses are also easily accommodated by the Wald approach. Let

υ = (β(τ1)
′, ..., β(τm)′) and define the null hypothesis as H0 : Rυ = r, where R is a

k × (m× (1 + p+ (1 + q)dim(x))) matrix of rank k and r is a k-dimensional vector. The

test statistic is similar to the Wald test in equation (9),

Wn = n(Rυ̂ − r)′[RV R′]−1(Rυ̂ − r).

However, the asymptotic covariance matrix for β(τ1), ..., β(τm) has blocks

V (τi, τj) = [τi ∧ τj − τiτj]Ω1(τi)
−1Ω0Ω1(τj)

−1,

where Ω1(τ)
−1 and Ω0 are estimated as above. The statistic Wn is still asymptotically χ2

k

under H0. This formulation accommodates a wide variety of testing situations, from a simple

test on single quantiles regression coefficients to joint tests involving several parameters

and distinct quantiles. Thus, for instance, we might test for the equality of several slope

coefficients across several quantiles.

Another important class of tests in the quantile regression literature involves the Kolmogorov-

Smirnov (KS) type tests, where the interest is to examine the property of the estimator over
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a range of quantiles τ ∈ T , instead of focusing only on selected quantiles. Thus, if one

has interest in testing Rβ(τ) = r over τ ∈ T , one may consider the KS type sup-Wald

test. Following Koenker and Xiao (2006a), we may construct a KS type test on the quantile

autoregression distributed lag process in the following way:

KSWn = sup
τ∈T

Wn(τ). (11)

The limiting distribution of the Kolmogorov-Smirnov test is given in the following theo-

rem:

Theorem 5 (Kolmogorov-Smirnov Test). Under H0 and conditions A1-A6,

KSWn = sup
τ∈T

Wn(τ) ⇒ sup
τ∈T

Q2
k(τ).

The proof of Theorem 5 follows directly from the continuous mapping theorem and equation

(8). Critical values for supQ2
k(τ) have been tabled by DeLong (1981) and, more extensively,

by Andrews (1993) using simulation methods.

5 Monte Carlo

5.1 Monte Carlo Design

In this section, we describe the design of some simulation experiments to assess the finite

sample performance of the QADL estimator and the inference procedures discussed in the

previous section. Two simple versions of the basic model (3) are considered in the simulation

experiment. In the first version, reported in Tables 1 and 2, the scalar covariate, xt, exerts a

pure location shift effect. In the second, reported in Tables 3 and 4, xt exerts both location

and scale effects. In the former case the response yt is generated by the model,

yt = µ+ αyt−1 + β1xt + β2xt−1 + ut, (12)
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while in the latter,

yt = µ+ αyt−1 + β1xt + β2xt−1 + (γxt)ut. (13)

We employ three different schemes to generate the disturbances ut. Under scheme 1, we

generate ut as N(0, σ2
u). Under scheme 2 we generate ut as t-distribution with 3 degrees of

freedom.

In all cases we set y0 = 0 and generate yt for t = 1, ..., n according to equations (12)

and (13), and in generating yt we discarded the first 100 observations, using the remaining

observations for estimation. This ensures that the results are not unduly influenced by

the initial values of the y0 process. We generate the exogenous covariates, xt, using the

same distribution as the innovations ut, that is, we draw xt from a normal distribution

under scheme 1, and from t-distribution with 3 degrees of freedom under scheme 2. In the

simulations, we experiment with sample sizes n = 100, 200. We set the number of replications

to 5000, and consider the following values for the remaining parameters:

(α, β1, β2) = (0.5, 0.5, 0.5), (0.75, 0.75, 0.75);

γ = 0.5, σ2
u = 1.

In the Monte Carlo study, we compare the estimators’ coefficients in terms of bias and root

mean squared error. We also investigate the small sample properties of the tests based on

different estimators paying particular attention to size and power.

5.2 Monte Carlo Results

We study four different estimators in the Monte Carlo experiment, the quantile autoregres-

sion (QAR) proposed by Koenker and Xiao (2006a), the quantile autoregressive distributed

lag model (QADL) proposed in this paper, the least squares estimator (OLS), and finally,

the least square distributed lag model (ADL). The quantile regression based estimators are
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analyzed for the median case. We also consider different sample sizes in the experiments,

however, because of the space limitations we report results only for n = 100. The results are

similar for the n = 200 sample size design.

5.2.1 Bias and RMSE

In the first part of the Monte Carlo we study the bias and root mean squared error (RMSE)

of the estimators. Tables 1 and 2 present bias and RMSE results of the estimators α,

β1, and β2 for location-shift model for all estimators. We present the simulation results for

(α, β1, β2) = (0.5, 0.5, 0.5) only (but similar results are obtained for the other set of parameter

values). For QAR and OLS models we do not include the terms xt and xt−1 in the estimation

equation. The results show that, as expected, omitting the variables in QAR and OLS cases

cause bias in estimation. In addition, in general, the bias of the estimators is bigger for

smaller coefficient values.

Table 1 shows the results for the first set of parameters with all three distributions. When

the disturbances are sampled from a Gaussian distribution, as expected, the autoregression

coefficient is biased for the QAR and OLS cases, and the QADL and ADL are approximately

unbiased. Regarding the RMSE, in the Gaussian condition, the OLS based estimators for

perform better than quantile regression estimators, that is, ADL has a smaller RMSE’s when

compared with QADL, and OLS has smaller RMSE when compared with QAR. However, for

the non-Gaussian cases t3 and chi-squared, the quantile regression base estimators perform

better in terms of RMSE vis− a− vis the least squared based estimators.

Table 2 presents the results for the second parameter case, where we increase the value

of parameters. The results are essentially the same as those in Table 1. The autoregressive

estimates of QAR and OLS are biased because of the omitted variables problem, evidencing

that if the model contains an exogenous variable, omitting such variable will bias the results.
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QAR QADL OLS ADL
Normal α −0.0971 −0.0087 0.0939 −0.0081

(0.1311) (0.0775) (0.1116) (0.0505)
β1 − 0.0014 − 0.0009

− (0.1109) − (0.0717)
β2 − 0.0037 − −0.0034

− (0.1172) − (0.0758)
t3 α 0.0968 −0.0027 0.0989 −0.0074

(0.0844) (0.0389) (0.1137) (0.0497)
β1 − −0.0005 − 0.0006

− (0.0625) − (0.1215)
β2 − 0.0018 − 0.0071

− (0.0658) − (0.1239)
χ3 α 0.0715 −0.0004 0.0976 −0.0079

(0.0979) (0.0502) (0.1129) (0.0503)
β1 − 0.0053 − 0.0023

− (0.0728) − (0.0743)
β2 − 0.0045 − 0.0056

− (0.0767) − (0.0780)

Table 1: Location-Shift Model: Bias and RMSE of Estimators (n = 100)

The results concerning RMSE are qualitatively the same and the QADL model performs

well for a heavy tail non-Gaussian case.

Tables 3 and 4 present bias and RMSE results of the estimators α and β for location-scale-

shift model. As in the location case, the bias of the estimators decreases as the coefficients

become larger. Again, the QADL estimator performs very well in the non-Gaussian heavy

tail cases.

Table 3 shows that in the Gaussian case the QAR and OLS are biased and the QADL

and ADL are approximately unbiased. As in the location case, in the presence of dynamic

variables, the quantile autoregression estimator proposed by Koenker and Xiao (2006a) is

biased if the true model indeed has exogenous covariates and one omits them when estimating

the model. The RMSE’s are smaller when compared with the previous location case, but

present the same features. Table 4 presents the results for the t3-distribution case, and the
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QAR QADL OLS ADL
Normal α 0.0710 −0.0005 0.0705 −0.0060

(0.0945) (0.0457) (0.0813) (0.0301)
β1 − −0.0010 − −0.0012

− (0.1107) − (0.0737)
β2 − 0.0055 − 0.0042

− (0.1253) − (0.0821)
t3 α 0.0372 −0.0018 0.0789 −0.0062

(0.0565) (0.0229) (0.0801) (0.0380)
β1 − 0.0007 − 0.0036

− (0.0626) − (0.1584)
β2 − 0.0015 − 0.0066

− (0.0640) − (0.1595)
χ3 α 0.0699 −0.0045 0.0706 −0.067

(0.0910) (0.0363) (0.0809) (0.0303)
β1 − 0.0003 − 0.0039

− (0.0722) − (0.0894)
β2 − 0.0040 − 0.0066

− (0.0752) − (0.0931)

Table 2: Location-Shift Model: Bias and RMSE of Estimators (n = 100)

results are qualitatively similar those in Table 2.

5.2.2 Size and Power

Now we turn our attention to the size and power of the asymptotic inference given in the

previous section. First, we concentrate on tests for selected quantiles, latter we move to

tests over a range of quantiles. For the former case, in order to calculate the power curves

we use the same setup as in the presented calculation of bias and RMSE. We present the

results for QADL as well as for ADL in order to compare the finite sample performance

of the estimators. Thus, we consider the model in equation (12) and test the hypothesis

that α̂(τ) = α and also that β̂(τ) = β for given τ . We present the results for α = 0.5 and

β = 0.5.5 For models under the alternative, we considered linear deviations from the null as

α + d/
√
n and β + d/

√
n. The construction of the test uses the density estimator given in

5The results for α = β1 = β2 = 0.75 are similar and we omit them to save space.
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QAR QADL OLS ADL
Normal α 0.1940 −0.0014 0.1768 −0.0042

(0.2067) (0.0341) (0.1844) (0.0336)
β1 − −0.0009 − −0.0009

− (0.0625) − (0.0355)
β2 − 0.0011 − 0.0028

− (0.0386) − (0.0373)
t3 α 0.0764 −0.0006 0.0977 −0.0052

(0.1015) (0.0188) (0.1404) (0.1196)
β1 − 0.0027 − 0.0004

− (0.1456) − (0.1463)
β2 − 0.0002 − 0.0003

− (0.0286) − (0.1558)
χ3 α 0.0689 −0.0010 0.0950 −0.0084

(0.0969) (0.0495) (0.1108) (0.0505)
β1 − 0.0041 − 0.0002

− (0.0726) − (0.0741)
β2 − 0.0030 − 0.0047

− (0.0761) − (0.0883)

Table 3: Scale-Location-Shift Model: Bias and RMSE of Estimators (n = 100)

QAR QADL OLS ADL
Normal α 0.1050 −0.0007 0.1007 −0.0022

(0.1182) (0.0192) (0.1073) (0.0170)
β1 − −0.0002 − −0.0007

− (0.0629) − (0.0335)
β2 − 0.0002 − 0.0011

− (0.0381) − (0.0327)
t3 α 0.0372 −0.0018 0.0789 −0.0062

(0.0565) (0.0229) (0.0801) (0.0380)
β1 − 0.0007 − 0.0036

− (0.0626) − (0.1584)
β2 − 0.0015 − 0.0066

− (0.0640) − (0.1595)
χ3 α 0.0699 −0.0045 0.0706 −0.067

(0.0910) (0.0363) (0.0809) (0.0303)
β1 − 0.0003 − 0.0039

− (0.0722) − (0.0894)
β2 − 0.0040 − 0.0066

− (0.0752) − (0.0931)

Table 4: Scale-Location-Shift Model: Bias and RMSE of Estimators (n = 100)
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equation (4). The procedure proposed by Powell (1986) entails a choice of bandwidth. We

consider the default bandwidth suggested by Bofinger (1975)

hn = [Φ−1(τ + cn)− Φ−1(τ − cn)] min(σ̂1, σ̂2)

where the bandwidth cn = O(n1/3), σ̂1 =
√
V ar(û), and σ̂2 = (Q̂(û, .75) − Q̂(û, .25))/1.34.

We also use a Gaussian bandwidth, but present results for the first choice of bandwidth

only. The results for n = 100 in the experiments are presented. The results are presented in

Figures 1 and 2 for α and β1.

Figure 1 shows the finite sample size and power for the estimated α and β coefficients

considering Normal distributions and QADL and ADL estimators. Part 1 of the figure

concerns α and Part 2 shows the results for β. Observe that the size is very close to the

established five percent for all estimators. When comparing QADL and ADL estimators

with respect to the Normal distribution one can see that the least squares based estimators

perform better than the quantile regression estimator in terms of power under Gaussian

conditions.

Figure 2 presents the results for finite sample size and power for the estimated α and β

coefficients considering t3 distribution and QADL and ADL estimators. As in the previous

case, the size is very close to the established five percent for all estimators. When the noise

in the model comes from a heavier distribution, t3, the QADL estimators have a superior

performance vis-a-vis the ADL estimators, showing that there are large gains in power by

using a robust estimator in the case of a non-Gaussian heavy tail distribution.

In summary, the results for the power curves show that the ADL presents more power than

QADL in the Normal case, but in the t3 case the inverse occurs such that QADL estimators

have more power than ADL. The QADL presents a higher power vis-a-vis the ADL estimator

in the non-Gaussian case. In addition, as expected, the comparison of same estimators using

different distributions show that quantile regression based estimator performs better in a
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Figure 1: Power Function for Normal innovations
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Figure 2: Power Function for t3 innovations

t3 distribution case, and ADL estimator has more power under Gaussian conditions. The

results for the other sample cases are qualitatively similar to those of Figures 1 and 2, but

also show that, as the sample sizes increase, the tests do have improved power properties,

corroborating the asymptotic theory.

In this section we also conduct Monte Carlo experiments to examine the QADL based

inference procedures, where we are particularly interested in models displaying asymmetric

dynamics. Thus, we consider the QADL model to test the hypothesis that α(τ) = constant

over τ .

The data in these experiments were generated from model (12) in the same manner as in

Section 3.1, where ut are i.i.d. random variables. We consider the Kolmogorov-Smirnov test

KSWn given by (11) for different sample sizes and innovation distributions, and choose T =
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Model Normal t3
Size α = 0.45 0.045 0.055

α = 0.75 0.038 0.052
Power ϕ1 0.21 0.26

ϕ2 0.39 0.47

Table 5: Size and Power for Normal

[0.1, 0.9]. Both Normal innovations and t-Student innovations are considered. The number

of repetitions is 2000.

Representative results of the empirical size and power of the proposed tests are reported

in Tables 5. We report the empirical size of this test for two choices of α(τ): (1) α = 0.45;

(2) α = 0.75. For models under the alternative, we consider the following two choices:

α = ϕ1(ut)

{
0.35, ut ≥ 0,

0.55, ut < 0,

α = ϕ2(ut)

{
0.15, ut ≥ 0,

0.75, ut < 0.

Table 5 reports the empirical size and power for the case with Gaussian innovations and

sample size n = 100, as well as the results for the t-Student innovations (with 3 degrees of

freedom) and same sample size. Results in Table 5 show that the size of the test is close to the

5% that was set also and confirm that, using the quantile regression based approach, power

gain can be obtained in the presence of heavy-tailed disturbances. (Such gains obviously

depend on choosing quantiles at which there is sufficient conditional density.)

6 Application: House Price Returns

There is an extensive literature on cross-sectional and time-series variation in house prices,

but this literature is marked by poor predictability. Mankiew and Weil (1989) find that the

Baby Boom had a large impact on the US housing market. By 1989 they predicted a future
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slow down in the house market, which was not observed6. In fact, house prices have shown

unprecedented values over the past 10 years. Increasing house prices had also importance

in the UK. The issue of affordable housing had claimed an increasing importance in the

public debate and the uncertainty about future prices is a concern of both policy makers

and researchers.7 Moreover, the fact that housing is a major component of wealth (Banks

and Tanner, 2002, show that real state accounted for 35% of aggregate household wealth in

the UK in the 1990s) and risky assets determines that house price changes have significant

effects on aggregate consumption (see for instance Campbell and Cocco, 2007).

The evolution of house prices was extensively studied in the UK by Muellbauer and

Murphy (1997), Ortalo-Magné and Rady (1999, 2006) and Rosenthal (2006) among others.

Those authors rigorously studied the booms and busts in the UK housing market until 2000.

In the past 50 years, there have been three major booms in the UK’s owner-occupied housing

market: in the early 1970s, in the late 1980s and the current housing boom. There were also

smaller booms in the 1960s and, more briefly, in the late 1970s, while the early 1990s saw a

bust on an unprecedented scale. Many factors conspired to produce the house price boom

of the late 1980s. Initial debt levels were low as were real house prices, giving scope for rises

in both. Income growth after the early 1980s recession was strong, as were income growth

expectations and these became more important as a result of financial liberalization, though

partly offset by bigger real interest rate effects. Wealth to income ratios grew and illiquid

assets increased enhanced by financial liberalization. Financial liberalization also permitted

higher gearing levels. Demographic trends were favorable with stronger population growth in

the key house buying age group. The supply of houses grew more slowly, with construction

of social housing falling to a small fraction of its level in the 1970s. Finally, in 1987-8 interest

6“Our estimates suggest that real housing prices will fall substantially - indeed, real housing prices may
well reach levels lower than those experienced at any time in the past forty years.” (p.236)

7‘Our forecasts have not been for dramatic falls in house prices, but who knows?... anyone who thinks
that they can forecast asset prices is kidding themselves’. Rachel Lomax, Governor of Bank of England, The
Guardian, London, November 23, 2003, cited in Rosenthal (2006, p. 289).
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rates fell and the proposed abolition of property taxes in favor of the Poll Tax gave a further

impetus to valuations.

The bust in the early 1990s was the result of the reversal of most of these factors. Interest

rates rose from 1988-90. The bust coincided with a general recession. Demographic trends

reversed. The revolt against the Poll Tax resulted in a new property tax, the Council Tax,

being reintroduced. Debt levels and real house prices had reached very high levels, while

wealth to income ratios then fell and recently experienced rates of return became negative

and made households more cautious. Mortgage lenders tightened up their lending criteria,

in a partial reversal of financial liberalization. Under these conditions, not even the major

falls in nominal interest rates that took place in the early 1990s, while real interest rates

remained high, were sufficient to revive UK house prices. However, the late 1990’s and the

new millennium showed an unprecedented increase in house prices, mostly concentrated in

the Southeast (i.e. London).

The conditional quantiles provide a complete picture of the distribution of house returns

conditional on past values. High quantiles correspond to unusually high returns, which

can be read as a boom; low quantiles correspond to busts in the market. We propose the

application of QADL to model house price returns in order to study the asymmetric behavior

of this time series. We are particularly interested in the autoregressive behavior of this series

at different quantiles, as well as the response from income shocks and the interest rate.

House price series are obtained from Nationwide mortgage data. Nationwide Building

Society has a long history of recording and analyzing house price data and has published

average house price information since 1952 while the quarterly data used here started in 1973.

It is the 4th largest mortgage lender in the UK by stock and therefore its data is representative

of the whole house market in the UK. The series used in this application is the average price

of a representative house, UK Quarterly Index. This series is constructed by Nationwide
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using mortgages that are at the approvals stage and after the corresponding building survey

has been completed. Approvals data is used as opposed to mortgage completions since it

should give an earlier indication of current trends in prices in the residential housing market.

In addition, properties that are not typical and may distort the series are also removed from

the data set. The index controls for: location in the UK, type of neighborhood, floor size,

property design (detached house, semi-detached house, terraced house, bungalow, flat, etc.),

tenure (freehold/leasehold/feudal, except for flats, which are nearly all leasehold), number

of bathrooms (1 or more than 1), type of central heating (full, part or none), type of garage

(single garage, double garage or none), number of bedrooms (1,2,3,4 or more than 4), and

whether property is new or not.

The series in levels are shown in figure 3. Nominal prices provide a quick overview of the

magnitude of the increase in house prices. With an average value of £25,000 in 1975, the

latest estimate is close to £200,000. Even when adjusting by inflation, the recent increments

are significant. The current boom in house prices can be seen by the continuous growth in

the past 12 years. Overall, all series show a similar performance in terms of business cycle

patterns. The series show three different cycles over the past 35 years with pikes in 1980,

1990 and possibly in 2007. Interest rates are currently at a record low. Real house price

returns and real GDP growth series are shown in figure 4.

In the long run, we expect that house price variations depend on its past values and some

key economic variables. Based on Muellbauer and Murphy (1997) we propose an autoregres-

sive specification of quarterly house price returns in UK using the quantile autoregressive

distributed lag model. As additional covariates we use the Bank of England interest rates,

real GDP growth and dummy variables for quarter effects. The proposed model is given by
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Figure 3: Series

Figure 4: Series
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Qrt (τ |=t) = µ (τ) +

p∑
j=1

αj (τ) rt−j +

q1∑
k=0

γk (τ) gt−k

+

q2∑
l=0

θl (τ) it−l + β1(τ)D1,t + β2(τ)D2,t + β3(τ)D3,t, (14)

where, rt is the real quarterly price return in period t, obtained as the difference in the

natural logarithm of house prices (deflated by the consumer price index), gt is the growth

rate of real GDP, it is the interest rates, and D represent dummy variables for quarter effects.

Note that when we exclude the covariates and the quarter dummy variables, we have back

the QAR model. Augmented Dickey-Fuller tests are applied to these variables to check for

unit roots. The rt series has an ADF value of -3.91 with a corresponding p-value for the null

hypothesis of unit root of 0.012. it has an ADF value of -3.70 with a p-value of 0.026. gt has

an ADF value of -3.89 with a p-value of 0.017. Therefore, for all the variables we reject the

unit root null hypothesis.

We first estimate the QAR model using Koenker and Xiao (2006a) methodology. We

use the BIC criteria as developed in Machado (1993) for τ = 0.5 to determine the number

of lags to be considered, and this suggests using a QAR model with p = 1. This is in line

with Rosenthal (2006) findings that suggest that 2 to 3-month lags are enough to model

monthly house prices. Although not reported, we also apply the BIC criteria for a range of

τ ∈ [0.05, 0.95], and in general, the model with one lag is selected, which determines that the

selection for the median may be appropriate for the whole distribution. Next, we perform

the QAR estimation for several quantiles and the results appear in figure 5 (QAR(1) alpha),

that plots the coefficient estimates with ±1.96 times the standard error confidence interval.

The results show a strong asymmetry in the lag response. Unit-root like behavior is observed

for high quantiles. Overall, the QAR(1) process is globally stationary, which corroborates

the use of Assumption A3.
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Figure 5: Coefficient estimates

Next, we consider our suggested QADL model. Applying a similar BIC criteria we select

p = 1, q1 = 0 for GDP, i.e. the contemporaneous effect of GDP, and q2 = 0 for the interest

rate. For the latter, we have a smaller BIC for the interest rate lagged one quarter than

with the contemporaneous value. For this reason we consider the interest rate lagged one

quarter only. The estimates shown in figure 5 (QADL(1,0) alpha) suggests that the model

still shows unit-root-like behavior only in the high extreme quantiles. That is, the model

seems to show global stationarity with some persistence in unusually high shocks. Note that

the inclusion of the covariates determines a more homogeneous increasing behavior of the

α-coefficients along different quantiles than that observed in the QAR model.

The interest rate has a negative impact on house price returns, although only statistically

significant for low quantiles (see figure 5, QADL(1,0) theta). In other words, this variable
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Figure 6: Predicted Quantiles
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may have an effect to prevent busts, but it may not deter house price booms. Therefore, the

policy followed by the Bank of England of cutting the interest rate to prevent a house price

collapse may have the desired effect. A Kolmogorov-Smirnov test of the hypothesis that

supτ∈T θ1 (τ) = 0 gives a KS value of 12.8. Looking at Andrews (1993, p.840) the critical

values are 8.19, 9.84, 13.01 for 10%, 5% and 1% significance levels respectively. Therefore,

the interest rate has an effect different from zero at the 5% significance level.

Real GDP growth has a larger impact on low and high quantiles than for medium quan-

tiles (see figure 5, QADL(1,0) gamma). For low quantiles, this is interpreted as the fact

that GDP growth reactivates the housing market when returns are low, while it might be

contributing to house prices’ busts (as that in the early 1990’s). Moreover, it contributes to

sustaining house prices increments. In other words, periods of unusually high returns are

very responsive to GDP growth. Note that the estimated coefficient for very high quantiles

is greater than 1, although not statistically different from this value except for a few quan-

tiles. Poterba (1991) and Capozza, Hendershott, Mack, and Mayer (2002) among others,

provide evidence on the asymmetric responses of house prices to income shocks and over-

shooting. The QADL estimates present this overshooting feature of house prices to income

shocks, but restricted to high quantiles. A Kolmogorov-Smirnov test of the hypothesis that

supτ∈T γ0 (τ) = 0 gives a KS value of 33.1, which by the critical values discussed above show

that the effect of GDP is not zero (as expected from the figure). However, the hypothesis

that supτ∈T γ0 (τ) = 1 gives KS=4.1. Then, overall, the effect of GDP growth on house price

returns is not different from 1, and there is no overshooting in the quantile process.

One important assumption of the QADL model is monotonicity, discussed in Section 2.

In order to check for this condition, we evaluate the monotonicity by predicting in-sample

quantiles for several observations. These are plotted in figure 6. In general, the predicted

values are increasing in τ , which corroborates that our specification is valid.
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In summary, the application illustrates the usefulness of the QADL process to model

asymmetric behavior in time series. Of particular importance are the asymmetries in the

slope of the lagged dependent variable and other covariates in both extreme low and high

quantiles. In this case, the conditional mean may be a misleading estimator in periods of

extremely low and high returns, which are those when policymakers are keener to intervene

or to predict future behavior.

7 Conclusion

We have developed a quantile autoregression distributed lag model (QADL), and discussed

a dynamic specification in the quantile autoregression framework. Quantile regression meth-

ods provide a framework for robust estimation and inference and allow one to explore a

range of conditional quantiles exposing a variety of forms of conditional heterogeneity under

less compelling distributional assumptions. The model is able to accommodate exogenous

covariates in the quantile autoregression model. We show that the estimators are consistent

and asymptotically normal. In addition, we suggest a Wald and Kolmogorov-Smirnov (KS)

type tests for general linear hypotheses.

Monte Carlo studies are conducted to evaluate the finite sample properties of the proposed

QADL estimator for several types of distributions. It is shown that the estimator proposed

by Koenker and Xiao (2006a) is severely biased by omitting exogenous variables, while the

QADL is generally unbiased. In addition, the QADL approach has a better performance

vis-a-vis ordinary augmented distributed lag (ADL) approach in terms of the root mean

square error of the estimators for non-Gaussian heavy tail distributions. We also investigate

the size and power of the test statistics comparing QADL with ADL and the results show

that there are large power gains in using tests based on QADL especially when innovations

are heavy-tailed.
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We illustrate the QADL model with an application to quarterly house price returns data

in the UK. The results show that house price returns have an asymmetric autoregressive

behavior, and that real GDP growth and interest rates have an asymmetric impact on

house prices variations along the quantiles. In addition, the results suggest that unit root

behavior is present only in the high extreme quantiles. Thus, the model seems to show global

stationarity with some persistence in unusually high returns. The inclusion of covariates

determines a more homogeneous increasing behavior of the autoregressive coefficients along

different quantiles than that observed in the QAR model, but maintains the persistence in

the high quantiles. The interest rate has a negative impact on house prices, mostly significant

for low quantiles. This can be interpreted as the fact that the interest rates have an effect on

stimulating the demand in the real estate market when returns are low, but it does not deter

house prices booms. In addition, there is evidence that the impact of GDP on house prices

presents an asymmetric persistence and it is stronger for low and high quantiles. For low

quantiles, this is interpreted as the fact that GDP growth reactivates the real estate market

when returns are low, while it might be contributing to house prices’ busts. Moreover, it

contributes to sustaining house prices booms. In other words, periods of unusually high

returns are very responsive to GDP growth. In fact, there is some evidence of overshooting

for high quantiles.

8 Appendix: Proofs

8.1 Proof of Theorem 1

Following Koenker and Xiao (2006a) we denote E(αj,t) = µj, E[θl,t] = ml, and assume that

1−
∑p

j=1 µj 6= 0. Let µy = (µ0 + µx

∑q
l=0ml)/(1−

∑p
j=1 µj), where µx = E[xt], and denote

y
t
= yt − µy and xt = xt − µx.
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We have

y
t
= α1,tyt−1

+ · · ·+ αp,tyt−p
+ θ0,txt + · · ·+ θq,txt−q + υt, (15)

where

υt = ut + µy

p∑
l=1

(αl,t − µl) + µx

q∑
l=0

(θl,t −ml).

It is easy to check that Eυt = 0 and Eυtυs = 0 for any t 6= s since Eut = 0, Eαl,t = µl, Eθl,t =

ml and ut is iid. We have to find an Ft-measurable solution for (15) to derive stationarity

condition for the process y
t
. We define the p× 1 random vectors Y t = [y

t
, y

t−1
, · · · , y

t−p+1
]′

and Vt = [υt, 0, · · · , 0]′, and p× p random matrices

At =

[
Ap−1,t αp,t

Ip−1 0(p−1)×1

]
and Θt =

[
Θq−1,t θq,t

0(p−1)×(q−1) 0(p−1)×1

]
,

where Ap−1,t = [α1,t, α2,t, · · · , αp−1,t], Θq−1,t = [θ0,t, θ1,t, · · · , θq−1,t]. Then,

E[VtV
′
t ] =

[
σ2

υ 01×(p−1)

0(p−1)×1 0(p−1)×(p−1)

]
= Σ,

and the original process can be written as

Y t = AtY t−1 + ΘtX t + Vt.

By substituting Y t−1 recursively, we have

Y t = Y t,m +X t,m +Rt,m,

where

Y t,m =
m∑

j=0

BjVt−j, Rt,m = Bm+1Y t−m−1, X t,m =
m∑

j=0

BjΘt−jX t−j,

and

Bj =

{ ∏j−1
l=0 At−l j ≥ 1

I j = 0.

The stationarity of an Ft-measurable solution for yt involves the convergence of {
∑m

j=0BjVt−j},

{Rt,m} and {X t,m} as m increases for fixed t. We need to verify that vecE(Y tY
T
t ) converges
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as m→∞. Let V = E(Y tY
′
t) then

vecV = vecE(Y tY
T
t ) = vecE[(Y t,m +X t,m +Rt,m)(Y t,m +X t,m +Rt,m)T ]

= vec[E(Y t,mY
T
t,m) + E(Y t,mX

T
t,m) + E(Y t,mR

T
t,m) + E(X t,mY

T
t,m) + E(X t,mX

T
t,m)

+E(X t,mR
T
t,m) + E(Rt,mY

T
t,m) + E(Rt,mX

T
t,m) + E(Rt,mR

T
t,m)] (16)

Notice that Bj is independent with Vt−j and {ut, t = 0,±1,±2, · · · } are independent random

variables, thus, {BjVt−j}∞j=0 is an orthogonal sequence in the sense that E[BjVt−jBkVt−k] = 0

for any j 6= k. Thus,

vecE[Y t,mY
T
t,m] = vecE

[
(

m∑
j=0

BjVt−j)(
m∑

j=0

BjVt−j)
T

]

= vecE

[
m∑

j=0

BjVt−jV
T
t−jB

T
j

]

=
m∑

j=0

j−1∏
l=0

E(At−l ⊗ At−l)vecE(Vt−jV
T
t−j)

since vec(ABC) = (CT ⊗ A)vec(B) and (
∏j

k=0Ak) ⊗ (
∏j

k=0Bk) =
∏j

k=0(Ak ⊗ Bk). If we

denote

A = E[At] =

[
ᾱ αp

Ip−1 0(p−1)×1

]
,

where ᾱ = [α1, α2, · · · , αs−1], , then At = A+ Ξt, where E(Ξt) = 0, and

E[At−l ⊗ At−l] = E[(A+ Ξt)⊗ (A+ Ξt)] = A⊗ A+ E(Ξt ⊗ Ξt) = ΩA.

Thus,

vecE

[
(

m∑
j=0

BjVt−j)(
m∑

j=0

BjVt−j)
T

]
=

m∑
j=0

Ωj
Avec(Σ).

36



Similarly, notice thatBj is independent with Θt−j, and Y t−j−1, Vt−j and Θt−j are independent

for j = 1, 2, · · · ,m. Thus, each expectation in the RHS of (16) are calculated by

vecE[Y t,mX
T
t,m] =

m∑
j=0

Ωj
AE[[ΘT

t−j ⊗ Vt−j]vec(XT
t−j)],

vecE[X t.mY
T
t,m] =

m∑
j=0

Ωj
AE[[V T

t−j ⊗Θt−j]vec(X t−j)],

vecE[Rt,mR
T
t,m] = Ωm+1

A vecV

vecE[Y t,mY
T
t,m] =

m∑
j=0

Ωj
Avec(Σ),

vecE[X t,mX
T
t,m] =

m∑
j=0

Ωj
AΩΘvecE[X t−jX

T
t−j],

where ΩΘ = E[Θt−j ⊗Θt−j], and the other four terms are equal to zero. The matrix ΩA can

be represented in Jordan canonical form as ΩA = PΛP−1, where Λ has the eigenvalues of ΩA

along its main diagonal. If the eigenvalues of ΩA have moduli less than unity, Λj converges

to zero at a geometric rate. Notice that Ωj
A = PΛjP−1, following similar analysis as Nicholls

and Quinn (1982) and Koenker and Xiao (2006a), Y t is stationary.

8.2 Proof of Theorem 2

Consistency of the estimator can be achieved by the argmax theorem in van der Vaart and

Wellner (1996). We first state a lemma which will help to prove the theorem.

Lemma 1 Under assumptions A1-A6

sup
β∈A×B

|gn(zt, β)− E[g(zt, β)]| = op(1)

where gn ≡ 1
n

∑n
i=1 ρτ (yt − z′tβ), and g ≡ ρτ (yt − z′tβ).

Proof. Let

P = {gn(β) : β ∈ Θ = A × G }
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and note that by assumption A5 Θ is compact, as argued in Lemma B2 of Chernozhukov

and Hansen (2006), P is continuous and uniformly Lipschitz over Θ. Therefore by Lemma

3.10 in van de Geer (2000) we have that H1,B(δ,P, P ) < ∞, that is, the δ-entropy with

bracketing of P is finite. Hence, it satisfies a uniform law of large numbers, and the lemma

follows.

Now we prove Theorem 2.

Proof. By bounded density function condition A2 and A5-A6, g(·) is continuous over

A ×B. By Lemma 1 supβ∈A×B |gn(zt, β)−E[g(zt, β)]| p→ 0. This implies by Corollary 3.2.3

in van der Vaart and Wellner (1996) that β̂(τ)
p→ β(τ).

8.3 Proof of Theorem 3

The next two lemmas help in the derivation of the results. The first lemma is an application

of Theorem 1 and standard central limit theorem. The second lemma is only a combination

of results.

Lemma 2 Under Assumptions A1-A6,

n−1/2

n∑
t=1

ztψτ (utτ ) ⇒ Ω0,

where

Ω0 =

 1 µy µx

µy Ωy Ωyx

µx Ωyx Ωx



Ωy =

 γy0 · · · γyp−1

...
. . .

...
γyp−1 · · · γy0

 , Ωx =

 γx0 · · · γxq−1

...
. . .

...
γxq−1 · · · γx0

 , Ωyx =

 γyx0 · · · γyp−1
...

. . .
...

γyp−1 · · · γy0

 ,
with E(yt) = µy, E(xt) = µx, E(ytyt−j) = γyj

, E(xtxt−j) = γxj
,E(ytxt−j) = γyxj

.
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Proof. By definition of utτ , assumptions A1-A6, and Theorem 1, we have thatE [ψτ (utτ )|=t] =

0, ztψτ (utτ ) is a martingale difference sequence and so n−1/2
∑n

t=1 ztψτ (utτ ) satisfies a cen-

tral limit theorem. As it is well know in the quantile regression literature, following the

arguments of Portnoy (1984) and Gutenbrunner and Jureckova (1992), the autoregression

quantile process is tight and thus the limiting variate viewed as a function of τ is a Brownian

Bridge over τ ∈ T.

n−1/2

n∑
t=1

ztψτ (utr) ⇒ Ω
1/2
0 Bk(τ).

For a fixed τ, n−1/2
∑n

t=1 ztψτ (utτ ) converge to a (p + q)-dimensional vector normal variate

with covariance matrix τ(1− τ)Ω0.

Lemma 3 Under Assumptions A1-A6,

n∑
t=1

∫ (n−1/2v)′zt

0

{I(utτ ≤ s)− I(utτ < 0)}ds⇒ 1

2
v′Ω1v,

where Ω1 = limn−1
∑n

t=1 ft−1[F
−1
t−1(τ)]ztz

′
t.

Proof. Consider the limiting distribution of Wn(v) =
∑n

t=1

∫ (n−1/2v)′zt

0
{I(utτ ≤ s)− I(utτ <

0)}ds, write it as

Wn(v) =
n∑

t=1

ξt(v), ξt(v) =

∫ (n−1/2v)′zt

0

{I(utτ ≤ s)− I(utτ < 0)}ds.

Further, define ξ̄t(v) = E{ξt(v)|=t}, and W̄n(v) =
∑n

t=1 ξ̄t(v), then, as in Koenker and Xiao

(2006a), {ξt(v)− ξ̄t(v)} is martingale difference sequence. Note that

utτ = yt − ztβ(τ) = yt − F−1
t−1(τ),
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and

W̄n(v) =
n∑

t=1

E

{∫ (n−1/2v)T zt

0

[I(utτ ≤ s)− I(utτ < 0)]ds|=t−1

}

=
n∑

t=1

∫ (n−1/2v)T zt

0

[∫ s+F−1
t−1(τ)

F−1
t−1(τ)

ft−1(r)dr

]
ds

=
n∑

t=1

∫ (n−1/2v)T zt

0

[
Ft−1(s+ F−1

t−1(τ))− Ft−1(F
−1
t−1(τ))

s

]
sds.

Under Assumption A6

W̄n(v) =
n∑

t=1

∫ (n−1/2v)T zt

0

ft−1(F
−1
t−1(τ))sds+ op(1)

=
1

2n

n∑
t=1

ft−1(F
−1
t−1(τ))v

′ztz
′
tv + op(1).

Let Ω1 = limn−1
∑n

t=1 ft−1[F
−1
t−1(τ)]ztz

′
t, so,

W̄n(v) ⇒ 1

2
v′Ω1v.

Using the argument as Herce (1996), the limiting distribution of
∑n

t=1 ξt(v) is the same as∑n
t=1 ξ̄t(v). Therefore

n∑
t=1

∫ (n−1/2v)′zt

0

{I(utτ ≤ s)− I(utτ < 0)}ds⇒ 1

2
v′Ω1v.

Now we prove Theorem 3.

Proof. As discussed in the text, the limiting distribution of
√
n(β̂(τ)−β(τ)) is giving by the

two terms of Hn(v), say n−1/2
∑n

t=1 v
′ztψτ (utτ ) and

∑n
t=1

∫ (n−1/2v)′zt

0
{I(utτ ≤ s) − I(utτ <

0)}ds. Thus, once we show that Hn(·) converge weakly to H(·) we just need to find the

minimizer of H(·), and v̂ =
√
n(β̂(τ)− β(τ)) converges in distribution to that minimizer.
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Denote ψτ (u) = τ − I(u < 0) for u 6= 0. Following the approach of Knight (1989) and

using the identity

ρτ (u− v)− ρτ (u) = −vψτ (u) + (u− v){I(0 > u > v)− I(0 < u < v)} (17)

= −vψτ (u) +

∫ v

0

{I(u ≤ s)− I(u < 0)}ds

the objective function for minimization of problem (7) can be rewritten as

Hn(v) =
n∑

t=1

[ρτ (utτ − (n−1/2v)′zt − ρτ (utτ )]

= −
n∑

t=1

v′n−1/2ztψτ (utτ ) +
n∑

t=1

∫ (n−1/2v)T zt

0

{I(utτ ≤ s)− I(utτ < 0)}ds.

Now, by Lemma 2 and Lemma 3 we have that

Hn(v) ⇒ −v′Ω1/2
0 Bk(τ) +

1

2
v′Ω1v = H(v).

Finally, by convexity Lemma of Pollard (1991) and arguments of Knight (1989), note that

Hn(v) and H(v) are minimized at v̂ =
√
n(β̂(τ) − β(τ)) and Σ1/2Bk(τ) respectively, where

and Σ = Ω−1
1 Ω0Ω

−1
1 . By Lemma A of Knight (1989) we have,

Σ−1/2
√
n(β̂(τ)− β(τ)) ⇒ Bk(τ).
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