53 research outputs found

    Locally Synchronous, Globally Asynchronous Design for Quantum-Dot Cellular Automata (LSGA QCA)

    Get PDF
    The concept of clocking for QCA, referred to as the four-phase clocking, is widely used. However, inherited characteristics of QCA, such as the way to hold state, the way to synchronize data flows, and the way to power QCA cells, make the design of QCA circuits quite different from VLSI and introduce a variety of new design challenges and the most severe challenges are due to the fact that the overall timing of a QCA circuit is mainly dependent upon its layout. This fact is commonly referred to as the layout-timing problem. To circumvent the problem, a novel self-timed circuit design technique referred to as the Locally Synchronous, Globally Asynchronous Design for QCA is proposed in this paper. The proposed technique can significantly reduce the layout-timing dependency from the global network of QCA devices in a circuit; therefore, considerably flexible QCA circuit design will be possible

    Locally Synchronous, Globally Asynchronous Design for Quantum-Dot Cellular Automata (LSGA QCA)

    Get PDF
    The concept of clocking for QCA, referred to as the four-phase clocking, is widely used. However, inherited characteristics of QCA, such as the way to hold state, the way to synchronize data flows, and the way to power QCA cells, make the design of QCA circuits quite different from VLSI and introduce a variety of new design challenges and the most severe challenges are due to the fact that the overall timing of a QCA circuit is mainly dependent upon its layout. This fact is commonly referred to as the layout-timing problem. To circumvent the problem, a novel self-timed circuit design technique referred to as the Locally Synchronous, Globally Asynchronous Design for QCA is proposed in this paper. The proposed technique can significantly reduce the layout-timing dependency from the global network of QCA devices in a circuit; therefore, considerably flexible QCA circuit design will be possible

    Dynamic Yield Analysis and Enhancement of FPGA Reconfigurable Memory Systems

    Get PDF
    This paper addresses the issues of field programmable gate arrays (FPGA) reconfigurable memory systems with faulty physical memory cells and proposes yield measurement techniques. Static yield (i.e., the yield which does not take into account the inherited redundancy utilization for repair) and dynamic yield (i.e., the yield which takes into account the inherited redundancy utilization for repair) of FPGA reconfigurable memory systems and their characteristics are extensively analyzed. Yield enhancement of conventional memory systems relies on additional redundancy, but FPGA reconfigurable memory systems have inherited redundancy and customizability. Thus, they can accommodate numerous target memory configurations, and redundant memory cells, if any, can be used as spares to enhance the dynamic yield of a target memory configuration. Three fundamental strategies are introduced and analyzed; i.e., redundant bit utilization, redundant word utilization, and a combination of both. Mathematical analysis of those techniques also has been conducted to study their effects on the yield. Selecting the most yield enhancing logical memory configuration which can accommodate a target memory requirement among the candidate configurations is referred to as optimal fitting. Optimal fitting algorithms for single configuration fitting, sequential reconfiguration system fitting, and concurrent reconfiguration system fitting are investigated based on the proposed yield analysis techniques

    Teaching Nanotechnology by Introducing Crossbar-Based Architecture and Quantum-Dot Cellular Automata

    Get PDF
    The end of photolithography as the driver for Moore\u27s law is predicted within seven to twelve years and six different emerging technologies (mostly nanoscale) are expected to replace the current CMOS-based system integration paradigm. As nanotechnology is emerging, (1) there is a strong need for well-educated nanoscale systems engineers by industry, and (2) research and education efforts are also called to overcome numerous nanoscale systems issues. This paper is to propose a way to teach nanotechnology by introducing two emerging technologies: crossbar-based nanoarchitecture and quantum-dot cellular automata

    Dynamic Yield Analysis and Enhancement of FPGA Reconfigurable Memory Systems

    Get PDF
    This paper addresses the issues of field programmable gate arrays (FPGA) reconfigurable memory systems with faulty physical memory cells and proposes yield measurement techniques. Static yield (i.e., the yield which does not take into account the inherited redundancy utilization for repair) and dynamic yield (i.e., the yield which takes into account the inherited redundancy utilization for repair) of FPGA reconfigurable memory systems and their characteristics are extensively analyzed. Yield enhancement of conventional memory systems relies on additional redundancy, but FPGA reconfigurable memory systems have inherited redundancy and customizability. Thus, they can accommodate numerous target memory configurations, and redundant memory cells, if any, can be used as spares to enhance the dynamic yield of a target memory configuration. Three fundamental strategies are introduced and analyzed; i.e., redundant bit utilization, redundant word utilization, and a combination of both. Mathematical analysis of those techniques also has been conducted to study their effects on the yield. Selecting the most yield enhancing logical memory configuration which can accommodate a target memory requirement among the candidate configurations is referred to as optimal fitting. Optimal fitting algorithms for single configuration fitting, sequential reconfiguration system fitting, and concurrent reconfiguration system fitting are investigated based on the proposed yield analysis techniques

    Defect Characterization and Yield Analysis of Array-Based Nanoarchitecture

    Get PDF
    With molecular-scale materials and fabrication techniques recently developed, high-density computing systems in nanometer domain emerge. An array-based nanoarchitecture has been recently proposed based on nanowires such as carbon nanotubes (CNTs), silicon nanowires (SiNWs). High-density nanoarray-based systems consisting of nanometer-scale elements are likely to have many imperfections; thus, defect-tolerance is considered as one of the most significant challenges. In this paper, we propose a probabilistic yield model for the array-based nanoarchitecture. The proposed yield model can be used 1) to accurately estimate the raw and net array densities, and 2) to design and optimize more defect and fault-tolerant systems based on the array-based nanoarchitecture

    Modeling Yield of Carbon-Nanotube/Silicon-Nanowire FET-Based Nanoarray Architecture with H-Hot Addressing Scheme

    Get PDF
    With molecular-scale materials, devices and fabrication techniques recently being developed, high-density computing systems in the nanometer domain emerge. An array-based nanoarchitecture has been recently proposed based on nanowires such as carbon nanotubes (CNTs) and silicon nanowires (SiNWs). High-density nanoarray-based systems consisting of nanometer-scale elements are likely to have many imperfections; thus, defect-tolerance is considered one of the most significant challenges. In this paper we propose a probabilistic yield model for the array-based nanoarchitecture. The proposed yield model can be used (1) to accurately estimate the raw and net array densities, and (2) to design and optimize more defect and fault-tolerant systems based on the array-based nanoarchitecture. As a case study, the proposed yield model is applied to the defect-tolerant addressing scheme called h-hot addressing and simulation results are discussed

    Modeling and Analysis of Fault Tolerant Multistage Interconnection Networks

    Get PDF
    Performance and reliability are two of the most crucial issues in today\u27s high-performance instrumentation and measurement systems. High speed and compact density multistage interconnection networks (MINs) are widely-used subsystems in different applications. New performance models are proposed to evaluate a novel fault tolerant MIN arrangement, thereby assuring performance and reliability with high confidence level. A concurrent fault detection and recovery scheme for MINs is considered by rerouting over redundant interconnection links under stringent real-time constraints for digital instrumentation as sensor networks. A switch architecture for concurrent testing and diagnosis is proposed. New performance models are developed and used to evaluate the compound effect of fault tolerant operation (inclusive of testing, diagnosis, and recovery) on the overall throughput and delay. Results are shown for single transient and permanent stuck-at faults on links and storage units in the switching elements. It is shown that performance degradation due to fault tolerance is graceful while performance degradation without fault recovery is unacceptable

    Reliability Modeling and Analysis of Clockless Wave Pipeline Core for Embedded Combinational Logic Design

    Get PDF
    This paper presents a model for analyzing the reliability of a clockless wave pipeline as an intellectual property (IP) core for embedded design. This design requires different clocking requirements by each embedded IP core during integration. Therefore, either partial or global lack of synchronization of the embedded clocking is considered for the data flow. The clockless wave pipeline represents an alternative to a traditional pipeline scheme; it requires an innovative computing model that is readily suitable for high-throughput computing by heterogeneous IP logic cores embedded in system-on-chip (SoC). A clockless wave pipeline technique relies on local asynchronous operation for seamless integration of a combinational core into an SoC. The basic computational components of a clockless wave pipeline are the datawaves, together with the request signals and switches. The coordination of the processing of the datawaves throughout the pipeline by the request signals is accomplished with no intermediate access in the clock control. Furthermore, the reliability of clockless-wave-pipeline-based cores is of importance when designing a reliable SOC. In this paper, the reliability in the clockless operations of the wave pipeline is analyzed by considering the datawaves and the request signals. The effect of the so-called out-of-orchestration between the datawaves and the request signals (which is referred to as a datawave fault) is proposed in the reliability analysis. A clockless-induced datawave fault model is proposed for clockless fault-tolerant design

    Evaluating the Repair of System-on-Chip (SoC) using Connectivity

    Get PDF
    This paper presents a new model for analyzing the repairability of reconfigurable system-on-chip (RSoC) instrumentation with the repair process. It exploits the connectivity of the interconnected cores in which unreliability factors due to both neighboring cores and the interconnect structure are taken into account. Based on the connectivity, two RSoC repair scheduling strategies, Minimum Number of Interconnections First (I-MIN) and Minimum Number of Neighboring Cores First (C-MIN), are proposed. Two other scheduling strategies, Maximum Number of Interconnections First (I-MAX) and Maximum Number of Neighboring cores First (C-MAX), are also introduced and analyzed to further explore the impact of connectivity-based repair scheduling on the overall repairability of RSoCs. Extensive parametric simulations demonstrate the efficiency of the proposed RSoC repair scheduling strategies; thereby manufacturing ultimately reliable RSoC instrumentation can be achieved
    • …
    corecore