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Dynamic Yield Analysis and Enhancement of FPGA
Reconfigurable Memory Systems

Minsu Choi, Member, IEEE,and Nohpill Park, Member, IEEE

Abstract—This paper addresses the issues of field pro-
grammable gate arrays (FPGA) reconfigurable memory systems
with faulty physical memory cells and proposes yield measure-
ment techniques. Static yield (i.e., the yield which does not take
into account the inherited redundancy utilization for repair) and
dynamic yield (i.e., the yield which takes into account the inher-
ited redundancy utilization for repair) of FPGA reconfigurable
memory systems and their characteristics are extensively ana-
lyzed. Yield enhancement of conventional memory systems relies
on additional redundancy, but FPGA reconfigurable memory
systems have inherited redundancy and customizability. Thus,
they can accommodate numerous target memory configurations,
and redundant memory cells, if any, can be used as spares to
enhance the dynamic yield of a target memory configuration.
Three fundamental strategies are introduced and analyzed; i.e.,
redundant bit utilization, redundant word utilization, and a com-
bination of both. Mathematical analysis of those techniques also
has been conducted to study their effects on the yield. Selecting
the most yield enhancing logical memory configuration which can
accommodate a target memory requirement among the candidate
configurations is referred to as optimal fitting. Optimal fitting
algorithms for single configuration fitting, sequential reconfigura-
tion system fitting, and concurrent reconfiguration system fitting
are investigated based on the proposed yield analysis techniques.

Index Terms—Concurrent reconfiguration, dynamic yield, field
programmable gate arrays (FPGA), FPGA-based instrumenta-
tion, memory yield enhancement, memory yield measurement,
optimal fitting, reconfigurable memory, sequential reconfigura-
tion, static yield.

I. INTRODUCTION

EMBEDDED reconfigurable memory, which consists of a
number of embedded array blocks (EABs), is becoming

an essential component of high-density FPGAs [1]–[5], [7], [8],
[12], [14]. Customized systems implemented on those FPGAs
generally require high-speed system storages such as packet
buffers, multimedia buffers and cache tag memory, to mention
a few [12], [14]. Examples of fully customized circuits imple-
mented on FPGAs can also be found in [6], where XOR-based
decomposition methods to implement parity prediction circuits
have been proposed for FPGAs. Implementing this embedded
storage provides faster operations and lower instrumentation
costs. Since the storage requirements of the customized systems
vary in size and number, the FPGA memory architecture must
be flexible to accommodate different independently addressable
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TABLE I
RECONFIGURABLEMEMORY PARAMETERS

memories as well as different memory widths and depths. A
number of recent commercial products, such as the Altera FLEX
10K family [4], the Xilinx Virtex and Spartan families [1], [2],
the Actel 1200XL and 3200DX families [3], and Lattice ispLSI
6192 [5], contain a considerable number of large SRAM-based
EABs.

Table I summarizes the parameters that define the FPGA re-
configurable memory array architecture, along with the values
of the various commercial FPGAs as mentioned above. In the
Xilinx FPGAs, for example, bits (i.e., the number
of physical memory cells) and (i.e., the
allowable logical memory width), meaning that each EAB can
be logically configured as one of 40961, 2048 2, 1024
4, 512 8 and 256 16 logical memory configurations (depth
and width, respectively).

Two or more EABs can be grouped into a single super-array
with appropriate decoding [12]. For example, two 2-kilobit ar-
rays with can be combined into a super-array
of 4 kilobits with . Fig. 1 shows how the
two 2-kilobit arrays combine to implement a 40961 super
array. Note that the multiplexer required to select the desired bit
from the two arrays can be implemented by the logic elements
(LEs) of the FPGA.

In normal operational condition, each physical memory cell
in an EAB is expected to be functional. This implies that each
physical memory cell functions correctly all the time. Thus, its
logical memory configurations are also supposed to function
correctly all the time. FPGAs become increasingly critical in
military and spacecraft instrumentation designs as the emphasis
to decrease cost and mission development time continues, and
hence, FPGAs for military or spacecraft instrumentation are
used as part of the system in harsh operational environments.
Under a harsh operational environment, each physical memory
cell is prone to experience faults unexpectedly since it could be
interfered by unpredictable environmental factors such as exces-
sive radiation, temperature and physical impact [9], [10], [13].
These papers also discussed the performance degradation ef-
fects due to temporary or permanent faults. Furthermore, the is-
sues associated with the SRAM-based reprogrammable FPGAs
for space applications were discussed in [9].

0018-9456/02$17.00 © 2002 IEEE
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Fig. 1. Combining two 2048X1 arrays into one 4096X1 super-array.

This paper mainly focuses on the FPGA reconfigurable
memory systems under harsh operational environments and
its effects on the dynamic yields (i.e., the yields which take
into account the inherited redundancy utilization for repair) of
different target memory configurations. To tolerate the faulty
cells due to the harsh environment, EABs can be tested, and
the inherently redundant memory cells can be utilized to repair
the faulty cells. Based on the measurement of the static and
dynamic yields of the FPGA memory system, a few algorithms
for selecting the most yield enhancing logical memory con-
figuration which can accommodate the given target memory
requirement among candidate configurations will be discussed.

The organization of this paper is as follows: In the next section,
a review and preliminaries related to this work will be given. In
Sections III and IV, both the static yield and dynamic yield of the
FPGA reconfigurable memory system will be discussed, respec-
tively. Then, the following three sections will introduce the dy-
namicyieldassurancetechniqueswiththreepossible inheritedre-
dundancy utilization techniques: bit-wise, word-wise and a com-
binationofboth.Basedontheproposedassurance techniques, the
optimal targetmemoryconfiguration fitting algorithms forsingle
configuration, sequential configurations and concurrent config-
urations will be proposed in Sections VII–X. Then, a discussion
and conclusions are given in the final section.

II. PRELIMINARIES

There are three basic architectural parameters to specify
the FPGA reconfigurable memory system: (the number of
EABs), (the number of bits per each EAB), and (the set
of allowable logical memory widths). Note that two or more
EABs can be combined into one super-array in order to build
a larger memory block as mentioned in the previous section.
The total number of physical memory cells in the super-array is
denoted by , which is the result of multiplication of and

(1)

Since one logical memory word consists of physical
memory cells, the total number of physical memory cells and

Fig. 2. Topology of the physical memory cells in EABs to implement a logical
memory configuration.

logical memory width determine the total number of logical
memory words, which is denoted by , also known as the
depth of a logical memory configuration

(2)

Fig. 2 illustrates a topology of the physical memory cells
in EABs to implement a target logical memory configuration.
There are physical memory cells assigned to each EAB of

. Then, EABs are cascaded to imple-
ment a super array of . The physical memory consists
of cells ( for Fig. 2), and the corresponding logical
memory configuration consists of words where each logical
memory word contains physical memory cells.

The following characteristics of the faults are assumed
throughout this paper:

1) The expected number of faulty physical memory cells is
assumed to be determined by.

2) The faults are also assumed to be randomly distributed
over the physical memory space.

3) The yield of a single memory cell is independent of the
yield of any other cells.

III. STATIC YIELD OF FPGA RECONFIGURABLE

MEMORY SYSTEM

The yield of a single physical memory cell, can be for-
mulated by

(3)

as shown in [15]. Then, the probability of not having a failing
cell in a bit physical memory, denoted by , can be formu-
lated by using the binomial distribution, as

, that is

(4)

As discussed in the previous section, the logical memory con-
figurations of the FPGA memory system are to be determined by
the architectural parameters, such as, , and . Each logical
memory word consists of bits of physical memory cells. The
probability of having a logical memory word without a faulty
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cell is . Let be the
yield of a logical memory word, i.e.

(5)

The total number of logical memory words,, can be used
to formulate the yield of the entire logical memory, i.e.

(6)

, using (4)–(6), which indicates that the yield
of the physical memory of the given FPGA memory system
(i.e., ) and the yield of the logical memory (i.e., ) are
always equal regardless of the word length. Thus, there is
no gain or loss in yield by simply mapping a physical memory
to a logical memory regardless of its width and depth.

Let the yield of the given FPGA memory system without in-
herited redundancy utilization be

(7)

Then, there are two possible ways to enhance the static yield
of the FPGA reconfigurable memory system.

1) The static yield is determined by the average number
of faults in a single cell . Reduction in could result in
enhancement of the static yield. This relies on memory
cell manufacturing technology. Note that enhancing the
static yield through reduction is beyond the scope of
this paper. Using more fault-tolerant flip-flops to harden
the FPGA memory system is discussed in [10].

2) Redundant physical memory cells can also be used to
enhance the static yield of the FPGA reconfigurable
memory system. This strategy requires additional
hardware such as spare memory cells, additional inter-
connection network, and a dedicated memory test circuit.
It is obvious that these strategies are not practical to
be employed in the majority of current FPGAs because
of the hardware overhead. Also note that enhancing
the static yield of the FPGA memory system through
additional hardware is also beyond the scope of this
paper. Application of additional hardware to harden the
FPGA memory system is shown in [9].

IV. DYNAMIC YIELD OF FPGA RECONFIGURABLE

MEMORY SYSTEM

FPGAs have a number of unique characteristics over appli-
cation specific integrated circuits (ASICs). Among the charac-
teristics, inherited redundancy and programmability of FPGAs
can be exploited to obtain yield enhancement. One or more
fully customized systems can be implemented on the FPGA,
and each application may request a different memory configura-
tion. Each requested memory configuration can be specified and
represented by a target logical memory width (i.e., the number
of bits per word, ) and a target logical memory depth (i.e.,
the number of words, ). Fig. 3(a) is an example of a target
memory configuration of and . If
and/or , physical memory cells
are left unused and can be used as spare memory cells. Suppose
that a super array of and is given. The shaded

Fig. 3. Target memory configuration and spare memory cells.

area in Fig. 3(b) shows a snapshot of the unused spare cells, and
the number of spare cells, denoted by, is ,
which is 13 cells in this example.

The yield of a target memory configuration is referred to as
dynamic yield which is denoted by . The dynamic yield of
a target memory configuration can be enhanced by utilizing the
spare cells in and the reprogrammability of the FPGA. The

of a target memory configuration without using spare cells
in , denoted by , is

(8)

where is the target word length, is the target depth, and
is the physical memory cell yield.

V. STRATEGY 1—DYNAMIC YIELD ENHANCEMENT USING

REDUNDANT BITS

The target memory configuration consists ofwords where
each word consists of memory cells. Then, the dynamic
yield of the target memory word, denoted by , can be
formulated by

(9)

Observation 1: can be enhanced by spare bits
placed in each word, if any. Fig. 4 shows a detailed illustration
of the situation where each target word has spare cells.
Thus, the total number of physical memory cells in each target
word becomes . If cells out of cells are
fault-free, then the word is still operational. Now, the dynamic
yield of the target memory word enhanced by spare bits,
denoted by , can be formulated as

(10)
Note that is always greater than or equal to

if is greater than 0, since the probability of having
fault-free cells out of cells is greater than or equal

to the probability of having fault-free cells out of cells.
Then, the dynamic yield of the target memory system en-

hanced by redundant bits, denoted by , can be identi-
fied as follows

(11)

Note that is always greater than or equal to
because of the Observation 1 and (11).
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Fig. 4. Target memory configuration with redundant bits.

Fig. 5. Dynamic yield enhancement by redundant bits.

Simulation 1: Parametric simulation results on the dynamic
yield enhancement of an experimental FPGA memory system
are given in Fig. 5, where , and

are used. This simulation clearly reveals the effect
of redundant-bit utilization for dynamic yield enhancement in
which enhances as increases. For instance, of

at is greater than 99%, where %.

VI. STRATEGY 2—DYNAMIC YIELD ENHANCEMENT

USING REDUNDANT WORDS

The target memory configuration consists of number of
words as shown in Fig. 3. If the given FPGA reconfigurable
memory system can utilize inherently redundant words (in other
words, ), the dynamic yield of the target memory
configuration (i.e., ) also can be enhanced by replacing
faulty words with fault-free spare words. Suppose that re-
dundant words are utilized as spare words (see Fig. 6). Then, theFig. 6. Target memory configuration with redundant words.
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Fig. 7. Dynamic yield enhancement by redundant words.

dynamic yield of the target memory system enhanced by redun-
dant words can be formulated as

(12)

Note that is always greater than or equal to ,
since the probability of having fault-free words out of

words is greater than or equal to the probability of having
fault-free words out of words.

Simulation 2: Parametric simulation results on the dynamic
yield enhancement of an experimental FPGA memory system
are given in Fig. 7, where , , and

are used. This simulation also clearly reveals
the effect of redundant-word utilization for dynamic yield en-
hancement. Dynamic yield enhancement using redundant bits
and redundant words now can be compared as well, because the
same number of spare cells as in the Simulation 1 is used (i.e.,

for the Simulation 1 and
for the Simulation 2 use the same number of spare cells).
enhances as increases. For instance, of
at is greater than 99% where %.

Observation 2: Both the Simulations 1 and 2 show that the
Strategy 2 performs better than the Strategy 1. This is because
the Strategy 1 focuses on enhancing . However, this
strategy is not so effective to enhance , since
is simply raised to the power of . An insignificant
degradation of could result in exponential degradation
of . On the other hand, the Strategy 2 performs better,
since each additional spare word enhances linearly. Ac-

cording to the result of the Simulation 2, successfully
tolerates to 0.17, while the same amount of redundancy
tolerates to 0.003 in the Simulation 1.

VII. T ARGET MEMORY CONFIGURATION FITTING

The FPGA reconfigurable memory system can be configured
into a number of logical memory configurations with different
width and depth combinations. The logical memory width
(i.e., the number of cells in a word) and the number of logical
memory words (i.e., the depth) specify each logical memory
configuration. If bits (i.e., the total number of
physical memory bits) and (i.e., the
allowable memory widths), then the FPGA reconfigurable
memory system can be logically configured into one of 4096

1, 2048 2, 1024 4, 512 8 or 256 16 logical
memory configurations. Finding the most suitable one from the
candidate logical memory configurations for the given target
memory configuration to maximally enhance the dynamic
yield of the target memory configuration is referred
to as “Target memory configuration fitting.” Allocation of
the most yield enhancing logical memory configuration for
the given target memory configuration is an important issue,
since the fitting directly determines the maximal dynamic yield
enhancement. Because of the architectural constraints such
as the limited number of programmable interconnections and
the fixed allowable logical word width, allocating arbitrary
spare physical memory cells one by one to repair arbitrary
faulty logical memory cells requires excessive reconfiguration
overhead which must be avoided by all means [12]. Therefore,
two simple yet effective methods are to be investigated: bit-wise
redundancy and word-wise redundancy.
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Fig. 8. Memory repair by bit-wise and word-wise redundancy utilization.

Fig. 9. Examples of target memory fitting.

If , the unused bits in each word can be utilized as
bit-wise redundancy. Likewise, if , the unused words
also can be used as word-wise redundancy. Fig. 8 shows an ex-
ample of bit-wise and word-wise redundancy utilization in which
a target memory configuration of and is fitted
into a logical memory configuration of and . If a
word has a sufficient number of nonfaulty cells (i.e., ), then
the word can be repaired by shifting the faulty cells, which is re-
ferred to as bit-shifting as shown in the second word in Fig. 8(b).
Otherwise (i.e., if the word does not have a sufficient number of
fault-free cells), then the word still can be repaired by shifting it-
self, which is referred to as word-shifting as shown in the third
word in Fig. 8(b). Both bit-wise shifting and word-wise shifting
are implemented by using inherited logic and memory resources
on demand; locations of the faulty bits and words are memorized
and replaced by redundant bits and words. As a result, the given
target memory configuration shown in Fig. 8(a) is successfully
repaired by both bit-wise and word-wise redundancy utilization.
Note thatbothbit-wiseshiftingandword-wiseshiftingcanbe im-
plemented by considerable inherited redundancy utilization and,
thus, should be minimal.

Another example is given in Fig. 9 to address the target
memory configuration fitting issue. The blank rectangles

represent the shape of the target memory configuration, and
the shaded rectangles represent the shapes of candidate logical
memory configurations. Note that the candidate logical memory
shape in Fig. 9(a) can not be used, since . Another
candidate shape in Fig. 9(b) cannot be used either, because

. Fig. 9(c) shows an example of a suitable candidate
logical memory shape in which both and .
Thus, the logical memory configuration in (c) successfully
satisfies the requirement. The area designated byin Fig. 9(c)
can be used as inherited redundancy.

Case Study 1:Suppose the FPGA reconfigurable memory
system with bits and
and a target memory configuration of and

are given. A list of all possible candi-
date logical memory configurations, denoted by ,
then can be constructed as ,

. Both and
are not suitable since they violate the requirement (in

other words, ), and also cannot be used since
. However, , , and are suitable for the

target memory configuration (i.e., and ).
Those suitable logical memory configurations are denoted by

.
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Fig. 10. Target memory configuration with redundant bits and words.

Fig. 11. Dynamic yield enhancement byC .

The dynamic yield of the target memory configuration en-
hanced by using spare cells of , denoted by , is

(13)

where is enhanced by (Strategy 1) and is
enhanced by (Strategy 2). Note that the Strategy 2 requires
partial rerouting of its interconnections where faulty words are
replaced by fault-free spare words [15], [12], while the Strategy
1 does not require rerouting since fault-free spare bit(s) in a
faulty logical word fix(es) faulty cells [15]. Thus, is used

first to fix the faulty words, and then is used to replace
the remaining faulty words to avoid the costly global rerouting.
Fig. 10 shows how the spare cells can be divided into two areas
designated by and in which the area is used as redundant
words and the areais used as redundant bits.

Simulation 3: A parametric simulation result on a dy-
namic yield enhancement of the experimental FPGA memory
system is shown in Fig. 11 where , and

. For ,
and . Thus, each word of the target memory is repaired
by redundant bits, but no redundant word exists to enhance
its dynamic yield further. That is why shows the
least fault-tolerance among the candidates. For ,
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and . In this case, each word gets enhanced by a
redundant bit ( ), and the overall memory gets enhanced
by redundant words ( ). However, shows
intermediate performance, since is too small to enhance the
dynamic yield of each word significantly. For ,
and show the best yield enhancement. The
tolerates to 0.8.

VIII. O PTIMAL TARGET MEMORY CONFIGURATION

FITTING FOR SINGLE CONFIGURATION

The issues associated with the target memory configuration
fitting have been discussed in the previous section. Selecting
the most dynamic yield enhancing one (denoted by )
among the candidate logical memory configurations () for
a target memory configuration is referred to as optimal target
memory configuration fitting (optimal fitting, for short). The
optimal fitting guarantees the most dynamic yield enhance-
ment. In Simulation 3, three suitable candidate logical memory
configurations, , , and , were considered. The
most dynamic yield enhancing logical memory configuration

among them is , since it tolerates to
0.8, approximately. The following problem statement formally
defines the optimal fitting.

Problem Statement 1:Among candidate logical memory
configurations , find the which maximally enhances
the dynamic yield of a target memory configuration specified
by and .

To effectively solve the problem stated above, the optimal
fitting algorithm is proposed as follows:

Algorithm 1: Optimal target memory
configuration fitting.

INPUT: , which is the target ,
and .
STEP 1: where is the number of
candidates. where is dy-
namic yield of the candidate.
where is the optimal candidate.
STEP 2: FOR TO BEGIN

IF AND BEGIN
Obtain using
(11);
IF BEGIN

;
;

END;
END;

END;
OUTPUT: .

The above algorithm requires iterations, which is the
number of candidates under consideration. Thus, the algorithm
has complexity. The correctness of the optimal fitting
algorithm can be easily proved. The algorithm simply rejects
candidates if they have or . Then, the algo-
rithm obtains the dynamic yields of pre-approved candidates
and compares them to get . Since the dynamic yield

TABLE II
SAMPLE RESULTSFROM THE OPTIMAL FITTING ALGORITHM

function is a decreasing function with respect to,
tolerates to better than the other candidates. Thus, if

, then is guaranteed to tolerate
to . The following case study further shows the effectiveness
and correctness of the optimal fitting algorithm.

Case Study 2:Suppose the FPGA reconfigurable memory
system with bits and ,
and a target memory configuration of and
are given. A list of suitable candidate logical memory configu-
rations is then . Table II
shows how the optimal fitting algorithm reacts when different

s are applied.
When , the optimal fitting algorithm selects

. is also 1.0, but the algorithm
is supposed to choose the first one since there is no gain by
selecting the second one. When is applied, the
optimal fitting algorithm selects as , since

, which is the most dynamic yield enhancing
candidate.

IX. OPTIMAL TARGET MEMORY CONFIGURATION FITTING

FOR SEQUENTIAL CONFIGURATIONS

The FPGA can be reconfigured as many times as needed to
implement numerous configurations. More than one application
can be implemented on the FPGA both sequentially and concur-
rently [11]. If the FPGA is required to be sequentially reconfig-
ured over the time to implement the configurations, the situa-
tion is referred to as sequential reconfiguration system (SRS).
Because the whole reconfiguration process is sequential, each
configuration is disjoint from the other configurations. Thus, the
dynamic yield of SRS, which is denoted by , can be for-
mulated as

(14)

where is the number of total configurations, and is the
dynamic yield of the configuration. Note that sequential uti-
lization of the optimal fitting always guarantees the maximum

. The following algorithm finds the optimal fitting for
SRS which maximizes .

Algorithm 2: Optimal target memory fitting
for .

INPUT: , which is the target ,
and of each configuration, and
which is the number of sequential con-
figurations.
STEP 1: FOR TO BEGIN

Using the Algorithm 1,
find the optimal fitting for
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Fig. 12. Illustration of the optimal fitting algorithm for SRS.

configuration
and store it in ;

END;
OUTPUT: .

The Algorithm 2 outputs an array of the optimal candidates
where is the optimal candidate for the configu-
ration. An illustration of the optimal fitting algorithm for SRS is
given in Fig. 12 where EABs are reconfigured, as a number
of target memory configurations are mapped into the FPGA se-
quentially. Some preliminary results are shown in Table III. The
given EABs are configured into a super array of and

, and three sequential target memory
configurations (400 3, 600 3 and 100 5) with corre-
sponding , and are fitted into the super array.
As a result, three optimal super array configurations (5128,
1024 4 and 256 16) are selected by the algorithm.

Note that the asymptotic complexity of the Algorithm 2 is
, since the Algorithm 1 requires and the Algo-

rithm 2 requires (i.e., the number of sequential configura-
tions) iterations over the Algorithm 1.

X. OPTIMAL TARGET MEMORY CONFIGURATION FITTING FOR

CONCURRENTCONFIGURATIONS

Multiple configurations can be successfully operational on
the FPGA concurrently [11], and this situation is referred to as
concurrent reconfiguration system (CRS). Since multiple con-
figurations reside in the FPGA and are functionally concur-
rent, the configurations are temporarily dependent on each other.
Thus, the dynamic yield of CRS, which is denoted by ,
can be calculated by

(15)

The CRS requires appropriate concurrent mappings of
multiple target memory configurations on the FPGA. Thus, the
given FPGA memory system must be partitioned into multiple
super arrays to serve the multiple target memory configurations
concurrently. The dynamic yield of CRS, which is denoted by

, can be optimized if carefully sized super arrays are

TABLE III
SAMPLE RESULTSFROM THE OPTIMAL FITTING ALGORITHM FOR SRS

assigned to the target memory configurations. The following
observation identifies some important issues of choosing
suitable candidates for CRS.

Observation 3: Suppose the FPGA memory system with 8
EABs ( ) and three concurrent target memory configu-
rations which utilize 1, 3, and 3 EABs are given. There are five
ways to partition the given 8 EABs into three groups: i.e., 1-1-6,
1-2-5, 1-3-4, 2-2-4, and 2-3-3 where each number represents the
number of EABs in each super array and each super array is de-
limited by “-.” Then, only 1-3-4 and 2-3-3 can be considered as
the suitable candidates, since the other candidates are physically
not suitable for the given target memory configuration of 1-3-3.
Then, the most dynamic yield enhancing candidate (i.e., the op-
timal candidate) can be chosen from the eligible candidates of
1-3-4 and 2-3-3.

The following algorithm finds the optimal target memory fit-
ting for CRS based on the unsuitable candidate pruning criteria
identified in the Observation 3.

Algorithm 3: Optimal target memory fitting
for .

INPUT: , which is the target ,
and of each configuration, and

which is the number of concurrent con-
figurations.
STEP 1: Construct suitable candidates as
described in the Observation 3 using the
given number of EABs while unsuitable
candidates (e.g., 1-1-6, 1-2-5 and 2-2-4
in Observation 3) are pruned. Store the
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Fig. 13. Illustration of the optimal fitting algorithm for CRS.

remaining suitable candidates (e.g.,
1-3-4 and 2-3-3 in Observation 3) in an
array and in . Initialize .
STEP 2: FOR TO BEGIN

FOR TO
Using the Algorithm 1,
find the optimal fitting
for configuration to

super array of ;
END;
Store the optimal fitting
results of

in ;
IF THEN
BEGIN

;
;

END;
END;

OUTPUT: .

Upon termination, the Algorithm 3 outputs the most dynamic
yield enhancing candidate. Fig. 13 shows how the optimal fit-

ting algorithm for CRS works where EABs are partitioned into
groups by the STEP 1 and each concurrent target memory con-
figuration gets optimally fitted into each group of EABs by the
STEP 2. Asymptotic complexity of the Algorithm 3 is ,
since it has a nested loop, where the inner loop iterates(i.e., the
number of concurrent configurations) times, and the outer loop
iterates (i.e., the number of candidates) times, and the Algo-
rithm 1 is embedded in the inner loop. Note that each candidate
consists of super-arrays, and the target concurrent configura-
tions are fitted into the super-arrays by the Algorithm 1.

The following observation traces the Algorithm 3 to show
how it works.

Observation 4: Suppose the FPGA reconfigurable memory
system of , and is given,
and three concurrent target memory configurations of 7004,
300 3, and 200 5 with corresponding , and

, respectively, are to fit into the memory system as shown in
Fig. 14. The STEP 1 of the algorithm partitions the given EABs
into 3 groups, since three concurrent target memory configu-
rations are given. There exist five different candidates: 6-1-1,
5-2-1, 4-3-1, 4-2-2, and 3-3-2. Among those candidates, only
4-2-2 and 3-3-2 are initially identified as the suitable candidates.
The other unsuitable candidates (6-1-1, 5-2-1, and 4-3-1) are
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Fig. 14. How the optimal fitting algorithm for CRS works.

pruned by the STEP 1. Then, the STEP 2 searches for the pos-
sible fitting solutions using the suitable candidates (4-2-2 and
3-3-2). As a result, the fitted candidate #1 (10244, 512 4
and 256 8) and #2 (768 4, 768 4 and 256 8) are con-
structed. Finally, the STEP 2 compares the dynamic yields of
the candidates using given values. The resulting super arrays
of 1024 4, 512 4, and 256 8 are guaranteed to be suitable
for the given concurrent target memory configurations and to be
fault-tolerant for the given .

XI. CONCLUSION

This paper has proposed various new ways to enhance the dy-
namic yield of the embedded reconfiguration memory system
with randomly distributed memory cell faults. Fundamental as-
surance techniques for the yield measurement and enhancement
and their practical applications have been discussed. Also, var-
ious simulations have been conducted to characterize and de-
velop the yield enhancement strategies. The balanced combina-
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tion of redundant bits and words has shown effective fault-tol-
erance, since the target word yield gets enhanced by redundant
bits, and the overall memory yield gets enhanced by redun-
dant words. Then, the significance of the optimal fitting which
finds the most yield enhancing one among the candidate logical
memory configurations has also been discussed. Finally, novel
optimal fitting algorithms which have moderate complexity of

(for single configuration fitting), for SRS fit-
ting, and for CRS fitting have been introduced. The
optimal fitting algorithms can be applied to most of the FPGAs
to make them fault-tolerant without modifying their hardware,
since they exploit inherited redundancy and programmability of
the FPGAs. The proposed algorithms ultimately establish a solid
theoretical foundation to realize practical and specific FPGA
implementations under various vendor-dependent constraints.
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